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1. (BRIEF) INTRODUCTION 

1.1 General context  
Simulation-based methods such as Approximate Bayesian Computation (ABC) are well adapted to the 
analysis of complex models of populations and species genetic history (Beaumont 2010). In this 
context, supervised machine learning (SML) methods provide attractive statistical solutions to conduct 
efficient inferences about both scenario choice and parameter estimation (Schrider & Kern 2018). The 
Random Forest methodology (RF) is a powerful ensemble of SML algorithms used for both classification 
and/or regression problems (Breiman 2001). RF allows conducting inferences at a lower computational 
cost than ABC, without preliminary selection of the relevant components of the ABC summary statistics, 
and bypassing the derivation of ABC tolerance levels (Pudlo et al. 2018; Raynal et al. 2019). We have 
implemented a set of RF algorithms to process inferences using simulated datasets generated from an 
extended version of the population genetic simulator implemented in DIYABC v2.1.0 (Cornuet et al. 
2014). The resulting computer package, named DIYABC Random Forest v1.0, integrates two 
functionalities into a user-friendly interface: the simulation under custom evolutionary scenarios of 
different types of molecular data (microsatellites, DNA sequences or SNPs – including traditional 
IndSeq and more recent PoolSeq SNP data) and RF treatments including statistical tools to evaluate 
the power and accuracy of inferences (Collin et al. 2020). Because of the properties inherent of the 
implemented RF methods and the large feature vector (including various summary statistics and their 
linear combinations) available for SNP data, DIYABC Random Forest v1.0 can efficiently contribute to 
the analysis of large-size SNP (and other molecular markers) datasets to make inferences about 
complex population genetic histories. 

1.2 How to cite the program DIYABC Random Forest v1.0 
Collin F-D, Durif G, Raynal L, Lombaert E, Gautier M, Vitalis R, Marin J-M, Estoup A (2020) DIYABC 
Random Forest v1.0: extending approximate Bayesian computation with supervised machine 
learning to infer demographic history from genetic polymorphisms. Submitted to Molecular Ecology 
Resources. ### bioRxiv reference coming soon #### 

1.3 Web site 

https://diyabc.github.io.  

You can get from this github site the executable files for different operating systems, the latest version of this 
manual document, as well as examples of DIYABC Random Forest analyses for different type of markers. 

1.4. System requirements, installing and launching the program 
• The package DIYABC Random Forest v1.0 is composed of three parts: the dataset simulator, the Random 

Forest inference engine and the graphical user interface. The whole is packaged as a standalone and user-
friendly application available at https://diyabc.github.io. The different developer and user manuals for each 
component of the package are available on the same site. DIYABC Random Forest v1.0 is a multithreaded 
program which runs on three operating systems: GNU/Linux, Microsoft Windows and MacOS. The program 
can be used through a modern and user-friendly graphical interface designed as an R shiny application (Chang 
et al. 2019). For a fluid and simplified user experience, this interface is available through a standalone 
application, which does not depend on R and hence can be used independently. The application is also 
implemented in a R package providing a standard shiny web application (with the same graphical interface) 
that can be run locally as any shiny application, or hosted as a web service to provide a DIYABC Random 
Forest v1.0 server for multiple users. 

• To install and run the program, please check the instructions available on the website https://diyabc.github.io/ 

https://diyabc.github.io/
https://diyabc.github.io/
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• Minimum 4GB of RAM; 6GB of RAM recommended 

• From 1 to 10 GB free disk space for each DIYABC Random Forest v1.0 project depending on the project 
configuration and the number of simulated datasets recorded in the training set file (reftableRF.bin 
file). 

1.5 Acknowledgements 

We thank Pierre Pudlo for useful discussions and Jean-Marie Cornuet for computer code expertise at the 
onset of the ABC Random Forest project. We also thank several “beta-users”, especially XXXNAMEXXX, who 
tested the software DIYABC Random Forest v1.0 with their data. This work was supported by funds from the 
French Agence National pour la Recherche (ANR projects SWING and GANDHI), the INRAE scientific division 
SPE (AAP-SPE 2016), and the LabEx NUMEV (NUMEV, ANR10-LABX-20). 

2. FORMALIZATION OF SCENARIOS AND GENERATION OF THE TRAINING SET 

2.1 Basic notions 

Before processing Random Forest analyses, one need to generate a training set which corresponds to the so 
called reference table in a standard ABC framework (Cornuet et al. 2014 and see the associated program 
DIYABC v2.1.0). The datasets composing the training set can be simulated under different models (hereafter 
referred to as scenarios) and sample (i.e. nb of markers and sampled individuals) configurations, using 
parameter values drawn from prior distributions. Each resulting dataset is summarized using a set of 
descriptive statistics. Scenarios and prior distributions are formalized and summary statistics are computed 
using the “Training set simulation” module of the main pipeline of DIYABC Random Forest v1.0, which 
essentially corresponds to an extended version of the population genetics simulator implemented in DIYABC 
v2.1.0 (Cornuet et al. 2014). As in the latter program, DIYABC Random Forest v1.0 allows considering 
complex population histories including any combination of population divergence events, symmetrical or 
asymmetrical admixture events (but not any continuous gene flow between populations) and changes in 
past population size, with population samples potentially collected at different times. Statistical analysis 
based on Random Forest algorithms of an observed dataset using a given training set are computed using 
the “Random Forest Analysis” module of the main pipeline of the program. 

2.2 Main features of algorithms for data simulation 
The ABC part of DIYABC Random Forest is a simulation-based method. Data simulation is based on the 
Wright-Fisher model. It consists in generating the genealogy of all sampled genes until their most recent 
common ancestor using (backward in time) coalescence theory. This begins by randomly drawing a 
complete set of parameters from their own prior distributions and that satisfy all imposed conditions. Then, 
once events have been ordered by increasing times, a sequence of actions is constructed. If there is more 
than one locus, the same sequence of actions is used for all successive loci.  
 
Possible actions fall into four categories: 
- adding a sample to a population = Add as many gene lineages to the population as there are genes in the 
sample. 
- merge two populations = Move the lineages of the second population into the first population. 
- split between two populations = Distribute the lineages of the admixed population among the two 
parental populations according to the admixture rate. 
- coalesce and mutate lineages within a population = There are two possibilities here, depending on 
whether the population is terminal or not. We call terminal the population including the most recent 
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common ancestor of the whole genealogy. In a terminal population, coalescences and mutations stop when 
the MRCA is reached whereas in a non-terminal population, coalescence and mutations stop when the upper 
(most ancient) limit is reached. In the latter case, coalescences can stop before the upper limit is reached 
because there remains a single lineage, but this single remaining lineage can still mutate.  

Two different coalescence algorithms are implemented: a generation by generation simulation or a 
continuous time simulation. The choice, automatically performed by the program, is based on an empirical 
criterion which ensures that the continuous time algorithm is chosen whenever it is faster than generation 
by generation while keeping the relative error on the coalescence rate below 5% (see Cornuet et al. 2008 for 
a description of this criterion). In any case, a coalescent tree is generated over all sampled genes.  

Then the mutational simulation process diverges depending on the type of markers: for 
microsatellite or DNA sequence loci, mutations are distributed over the branches according to a Poisson 
process whereas for SNP loci, one mutation is applied to a single branch of the coalescent tree, this branch 
being drawn at random with probability proportional to its length. Eventually, starting from an ancestral 
allelic state (established as explained below), all allelic states of the genealogy are deduced forward in time 
according to the mutation process. For microsatellite loci, the ancestral allelic state is taken at random in the 
stationary distribution of the mutation model (not considering potential single nucleotide indel mutations). 
For DNA sequence loci, the procedure is slightly more complicated. First, the total number of mutations over 
the entire tree is evaluated. Then according to the proportion of constant sites and the gamma distribution 
of individual site mutation rates, the number and position of mutated sites are generated. Finally, these 
mutated sites are given ‘A’, ‘T’, ‘G’ or ‘C’ states according to the selected mutation model. For SNP loci, the 
ancestral allelic state is arbitrarily set to 0 and it becomes equal to 1 after mutation. 

Each category of loci has its own coalescence rate deduced from male and female effective population 
sizes. In order to combine different categories (e.g. autosomal and mitochondrial), we have to take into 
account the relationships among the corresponding effective population sizes. This can be achieved by 
linking the different effective population sizes to the effective number of males ( 𝑵𝑵𝑴𝑴 ) and females (𝑵𝑵𝑭𝑭) 
through the sum 𝑵𝑵𝑻𝑻 = 𝑵𝑵𝑭𝑭 + 𝑵𝑵𝑴𝑴 and the ratio 𝒓𝒓 = 𝑵𝑵𝑴𝑴 (𝑵𝑵𝑭𝑭 + 𝑵𝑵𝑴𝑴)⁄ . We use the following formulae for the 
probability of coalescence (p) of two lineages within this population: 
 

Autosomal diploid loci: 

𝑝𝑝 =
1

8𝑟𝑟(1 − 𝑟𝑟)𝑁𝑁𝑇𝑇
 

Autosomal haploid loci: 

𝑝𝑝 =
1

4𝑟𝑟(1 − 𝑟𝑟)𝑁𝑁𝑇𝑇
 

X-linked loci / haplo-diploid loci: 

𝑝𝑝 =
1 + 𝑟𝑟

9𝑟𝑟(1 − 𝑟𝑟)𝑁𝑁𝑇𝑇
 

Y-linked loci: 

𝑝𝑝 =
1
𝑟𝑟𝑁𝑁𝑇𝑇

 

Mitochondrial loci: 

𝑝𝑝 =
1

(1 − 𝑟𝑟)𝑁𝑁𝑇𝑇
 

Users have to provide a (total) effective size 𝑁𝑁𝑇𝑇 (on which inferences will be made) and a sex-ratio 𝑟𝑟. If no 
sex ratio is provided, the default value of 𝑟𝑟 is taken as 0.5. 
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2.3 Historical model parameterization 

The evolutionary scenario, which is characterized by the historical model, can be described in a dedicated 
panel of the interface of the program as a succession in time of "events" and "inter event periods". In the 
current version of the program, we consider 4 categories of events: population divergence, discrete change 
of effective population size, admixture and sampling (the last one allow considering samples taken at 
different times). Between two successive events affecting a population, we assume that populations evolve 
independently (e.g. without migration) and with a fixed effective size. The usual parameters of the historical 
model are the times of occurrence of the various events (counted in number of generations), the effective 
sizes of populations and the admixture rates. When writing the scenario, events have to be coded 
sequentially backward in time (see section 2.3.2 for examples). Although this choice may not be natural at 
first sight, it is coherent with coalescence theory on which are based all data simulations in the program. For 
that reason, the keywords for a divergence or an admixture event are merge and split, respectively. Two 
keywords varNe and sample correspond to a discrete change in effective population size and a gene 
sampling within a given population, respectively. A scenario takes the form of a succession of lines (one line 
per event), each line starting with the time of the event, then the nature of the event, and ending with 
several other data depending on the nature of the event. Following is the syntax used for each category of 
event: 

Population sample 
⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩ sample ⟨𝑝𝑝𝑝𝑝𝑝𝑝⟩  
Where ⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩ is the time (always counted in number of generations) at which the sample was collected and 
⟨𝑝𝑝𝑝𝑝𝑝𝑝⟩ is the population number from which is taken the sample. It is worth stressing here that samples are 
considered in the same order as they appear in the data file. The number of lines will thus be exactly 
equal to the number of samples in the datafile. 
 
Population size variation 
⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩ varNe ⟨𝑝𝑝𝑝𝑝𝑝𝑝⟩ ⟨𝑁𝑁𝑡𝑡⟩ 
From time ⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩, looking backward in time, population ⟨𝑝𝑝𝑝𝑝𝑝𝑝⟩ will have an effective size ⟨𝑁𝑁𝑡𝑡⟩. 
 
Population divergence 
⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩ merge ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ ⟨𝑝𝑝𝑝𝑝𝑝𝑝0⟩ 
At time ⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩, looking backward in time, population ⟨𝑝𝑝𝑝𝑝𝑝𝑝0⟩ "merges" with population ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩. Hereafter, 
only ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ "remains". 

Population admixture 
⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩ split ⟨𝑝𝑝𝑝𝑝𝑝𝑝0⟩ ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ ⟨𝑝𝑝𝑝𝑝𝑝𝑝2⟩ ⟨𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡⟩ 
At time ⟨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⟩, looking backward in time, population ⟨𝑝𝑝𝑝𝑝𝑝𝑝0⟩ "splits" between populations ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ and 
⟨𝑝𝑝𝑝𝑝𝑝𝑝2⟩. A gene lineage from population ⟨𝑝𝑝𝑝𝑝𝑝𝑝0⟩ joins population ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ (respectively ⟨𝑝𝑝𝑝𝑝𝑝𝑝2⟩) with 
probability ⟨𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡⟩ (respectively 1-⟨𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡⟩). Hereafter, only ⟨𝑝𝑝𝑝𝑝𝑝𝑝1⟩ and ⟨𝑝𝑝𝑝𝑝𝑝𝑝2⟩ "remain". 

Note that one needs to write a first line giving the effective sizes of the sampled populations before the 
first event described, looking backward in time. Expressions between arrows, other than population 
numbers, can be either a numeric value (e.g. 25) or a character string (e.g. t0). In the latter case, it is 
considered as a parameter of the model. The program offers the possibility to add or remove scenarios, by 
just clicking on the corresponding buttons. The usual shortcuts (e.g. CTRL+C, CTRL+V and CTRL+X) can be 
used to edit the different scenarios. Some or all parameters can be in common among scenarios. 
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2.3.1 Key notes 

1. There are two ways of giving a fixed value to effective population sizes, times and admixture rates. 
Either the fixed value appears as a numeric value in the scenario windows or it is given as a string value 
like any parameter. In the latter case, one gives this parameter a fixed value by choosing a Uniform 
distribution and setting the minimum and maximum to that value in the prior setting of the 
corresponding interface panel. 

2. All expressions must be separated by at least one space. 

3. All expressions relative to parameters can include sums or differences of parameters of the same type 
(e.g. divergence times or effective population size but not a mixture of both). For instance, it is possible 
to write: 
t0 merge 2 3 
t0+t1 merge 1 2 
This means that t1 is the time elapsed between the two merge events. Note that one cannot mix a 
parameter and a numeric value (e.g. t1+150 will result in an error). This can be done by writing t1+t2 
and fixing t2 by choosing a uniform distribution with lower and upper bounds both equal to 150 in the 
interface. 

4. Time is always given in generations. Since we look backward, time increases towards past. 

5. Negative times are allowed (e.g. the example given in section 2.3.2), but not recommended. 

6. Population numbers must be consecutive natural integers starting at 1. The number of population can 
exceed the number of samples and vice versa: in other words, unsampled populations can be considered 
in the scenario on one hand, and the same population can be sampled more than once on the other 
hand. 

7. Multi-furcating population trees can be considered, by writing several divergence events 
occurring at the same time. However, one has to be careful to the order of the merge events. For 
instance, the following piece of scenario will fail: 
100 merge 1 2 
100 merge 2 3 
This is because, after the first line, population 2, which has merged with population 1, does not "exist" 
anymore (the remaining population is population 1). So, it cannot receive lineages of population 3 as it 
should as a result of the second line. The correct ways are either to put line 2 before line 1, or to change 
line 2 to: 
100 merge 1 3. 

8. Since times of events can be parameters, the order of events can change according to the values taken 
by the time parameters. In any case, before simulating a dataset, the program sorts out events by 
increasing times. Note that sorting out events by increasing times can only be done when all time values 
are known, i.e. when simulating datasets. When checking scenarios in the interface, all time values are 
not yet defined, so that when visualizing a scenario, events are represented in the same order as they 
appear in the window used to define the scenario. If two or more events occur at the same time, the 
order is that of the scenario as it is written by the user. 

9. Most scenarios begin with sampling events. We then need to know the effective size of the populations 
to perform the simulation of coalescences until the next event concerning each population. We decided 
to provide the effective size (first line) and the sampling description (following lines) on distinct lines. 
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2.3.2 Examples 

Below are some usual scenarios with increasing complexity. Each scenario is coded (as in the corresponding 
interface panel of the program) on the left side and a graphic representation (given by DIYABC Random 
Forest) is printed on the right side 

1. One population from which several samples have been taken at various generations: 0, 3 and 10. 
Generation 0 could correspond for instance to the most recent sampling date. The only unknown 
historical-demographical parameter of the scenario is the (constant) effective population size which is 
defined in the first line at sampling time. 
 

   

   
2. Two populations of size N1 and N2 (defined in the first line at sampling time) have diverged t 

generations in the past from an ancestral population of size N1+N2. 
 

   

   
3. Two parental populations (1 and 2) with constant effective population sizes N1 and N2 have diverged at 

time td from an ancestral population of size NA. At time ta, there has been an admixture event between 
the two populations giving birth to an admixed population (3) with effective size N3 and with an 
admixture rate ra relative to population 1. 
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4. The next scenario includes four population samples and two admixture events. All populations have 

identical effective sizes (Ne). 
 

   

   
  Note that although there are only four samples, the scenario includes a fifth unsampled population. This 

unsampled population which diverged from population 1 at time t3 was a parent in the admixture 
event occurring at time t2. Note also that the first line must include the effective sizes of the five 
populations. 
 

5. The following three scenarios correspond to a classic invasion history from an ancestral population 
(population 1). In scenario 1, population 3 is derived from population 2, itself derived from population 
1. In scenario 2, population 2 derived from population 3, itself derived from population 1. In scenario 3, 
both populations 2 and 3 derived independently from population 1. Note that when a new population is 
created from its ancestral population, there is an initial size reduction (noted here N2b for population 2 
and N3b for population 3) for a given number of generation (here db for both populations) mimicking a 
demographic bottleneck since the invasive population generally starts with a few immigrants. For 
instance, a low number of Nxb individuals for db generations could corresponds to Nxb values ranging 
between 5 to 100 individuals and db values ranging from 1 to 10 generations (e.g. Fraimout et al. 2017). 
If db = 0 then no bottleneck occurs which can be also a coding choice. 

  Scenario 1 
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  Scenario 2 

 

 

  

 

 Scenario 3 
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2.4 Mutation model parameterization (microsatellite and DNA sequence loci) 

The program can analyze microsatellite data and DNA sequence data altogether as well as separately. SNP 
loci can be also analyzed separately from microsatellite data and DNA sequence data. It is worth stressing 
that all loci in an analysis must be genetically independent. Second, for DNA sequence loci, intralocus 
recombination is not considered. Loci are grouped by the user according to its needs. For microsatellite and 
DNA sequence, a different mutation model can be defined for each group. For instance, one group can 
include all microsatellites with motifs that are 2 bp long and another group those with a 4 bp long motif. 
Also, with DNA sequence loci, nuclear loci can be grouped together and a mitochondrial locus form a 
separate group. SNPs do not require mutation model parameterization (see below for details). 

We now describe the parameterization of microsatellite and DNA sequence markers. 

2.4.1 Microsatellite loci 
Although a variety of mutation models have been proposed for microsatellite loci, it is usually sufficient to 
consider only the simplest models (e.g. Estoup et al. 2002). This has the non-negligible advantage of 
reducing the number of parameters. This is why we chose the Generalized Stepwise Mutation model (GSM). 
Under this model, a mutation increases or decreases the length of the microsatellite by a number of repeated 
motifs following a geometric distribution. This model necessitates only two parameters: the mutation rate 
(µ) and the parameter of the geometric distribution (P). The same mutation model is imposed to all loci of a 
given group. However, each locus has its own parameters (µi and Pi) and, following a hierarchical scheme, 
each locus parameter is drawn from a gamma distribution with mean equal to the mean parameter value.  
Note also that: 

1. Individual loci parameters (µi and Pi) are considered as nuisance parameters and hence are never 
recorded. Only mean parameters are recorded. 

2. The variance or shape parameter of the gamma distributions are set by the user and are NOT 
considered as parameters. 

3. The SMM or Stepwise Mutation Model is a special case of the GSM in which the number of repeats 
involved in a mutation is always one. Such a model can be easily achieved by setting the maximum 
value of mean P (𝑃𝑃) to 0. In this case, all loci have their 𝑃𝑃𝑖𝑖  set equal to 0 whatever the shape of the 
gamma distribution. 
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4. All loci can be given the same value of a parameter by setting the shape of the corresponding 
gamma distribution to 0 (this is NOT a limiting case of the gamma, but only a way of telling the 
program). 

To give more flexibility to the mutation model, the program offers the possibility to consider mutations that 
insert or delete a single nucleotide to the microsatellite sequence by using a mean parameter (named 𝜇𝜇(𝑆𝑆𝑆𝑆𝑆𝑆)) 
with a prior to be defined and individual loci having either values identical to the mean parameter or drawn 
from a Gamma distribution. 

2.4.2 DNA sequence loci 

The program does not consider insertion-deletion mutations, mainly because there does not seem to be 
much consensus on this topic. Concerning substitutions, only the simplest models are considered. We chose 
the Jukes-Cantor (1969) one parameter model, the Kimura (1980) two parameter model, the Hasegawa-
Kishino-Yano (1985) and the Tamura-Nei (1993) models. The last two models include the ratios of each 
nucleotide as parameters. In order to reduce the number of parameters, these ratios have been fixed to the 
values calculated from the observed dataset for each DNA sequence locus. Consequently, this leaves two and 
three parameters for the Hasegawa-Kishino-Yano (HKY) and Tamura-Nei (TN), respectively. Also, two 
adjustments are possible: one can fix the fraction of constant sites (those that cannot mutate) on the one 
hand and the shape of the Gamma distribution of mutations among sites on the other hand. As for 
microsatellites, all sequence loci of the same group are given the same mutation model with mean 
parameter(s) drawn from priors and each locus has its own parameter(s) drawn from a Gamma distribution 
(same hierarchical scheme). Notes 1, 2 and 4 of previous subsection (2.4.1) apply also for sequence loci. 

2.4.3 SNPs do not require mutation model parameterization – notion of MAF and MRC 

SNPs have two characteristics that allow to get rid of mutation models: they are (necessarily) polymorphic 
and they present only two allelic states (ancestral and derived). In order to be sure that all analyzed SNP loci 
have the two characteristics, non-polymorphic loci are discarded right from the beginning of analyses. Note 
that a warning message will appear if the observed dataset include monomorphic loci, the latter being 
automatically removed from further analyses by the program. Consequently, one can assume that there 
occurred one and only one mutation in the coalescence tree of sampled genes. We will see below that this 
largely simplifies (and speeds up) SNP data simulation as one can use in this case the efficient “-s” algorithm 
of Hudson (2002) (Cornuet et al. 2014). Also, this advantageously reduces the dimension of the parameter 
space as mutation parameters are not needed in this case. There is however a potential drawback which is 
the absence of any calibration generally brought by priors on mutation parameters. Consequently, 
time/effective size ratios rather than original time or effective size parameters will be informative. 

It is worth noting that, using the Hudson’s simulation algorithm for SNP markers leads to applying a 
default MAF (minimum allele frequency) criterion on the simulated dataset. As a matter of fact, each locus in 
both the observed and simulated datasets will be characterized by the presence of at least one copy of the 
SNP alleles over all genes sampled from all studied populations (i.e. pooling all genes genotyped at the 
locus). In DIYABC Random Forest v1.0, it is possible to impose a given MAF criterion on the observed and 
simulated datasets. This MAF is computed pooling all genes genotyped over all studied population samples. 
For instance, the specification of a MAF equal to 5% will automatically select a subset of m loci characterized 
by a minimum allele frequency > 5% out of the l loci of the observed dataset. In agreement with this, only m 
loci with a MAF>5% will be retained in a simulated dataset. In practice, the instruction for a given MAF has 
to be indicated directly in the headline of the file of the observed dataset (see section 7.1.1 for data file 
examples). For instance, if one wants to consider only loci with a MAF equal to 5% one will write 
<MAF=0.05> in the headline. Writing <MAF=hudson> (or omitting to write any instruction with respect to 
the MAF) will bring the program to use the standard Hudson's algorithm without further selection. The 
selection of a subset of loci fitting a given MAF allows: (i) to remove the loci with very low level of 
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polymorphism from the dataset and hence increase the mean level of genetic variation of both the observed 
and simulated datasets, without producing any bias in the analyses; and (ii) to reduce the proportion of loci 
for which the observed variation may corresponds to sequencing errors. In practice MAF values ≤10% are 
considered. To check for the consistency/robustness of the ABC results obtained, it may be useful to treat a 
SNP dataset considering different MAFs (for instance MAF=hudson, MAF=1% and MAF=5%). 

It is worth stressing that the MAF criterion applies to standard Individual sequencing (hereafter 
IndSeq) SNP data.  In addition to IndSeq data, DIYABC Random Forest v1.0 allows the simulation and 
analyses of pool-sequencing SNP data (hereafter PoolSeq data), which basically consist of whole-genome 
sequences of pools of tens to hundreds of individual DNAs (Gautier et al., 2013; Schlötterer et al., 2014). In 
practice, the simulation of PoolSeq data consists first in simulating individual SNP genotypes for all 
individuals in each population pool, and then generating pool read counts from a binomial distribution 
parameterized with the simulated allele counts (obtained from individual SNP genotypes) and the total pool 
read coverage (e.g., Hivert, et al. 2018). A criterion somewhat similar to the MAF was implemented for 
PoolSeq data: the minimum read count (MRC). The MRC is the number of sequence reads of the minor allele 
frequency allele when pooling the reads over all population samples. The specification of a MRC equal for 
instance to 5 will automatically select a subset of m PoolSeq loci characterized by more than five reads over 
all studied pools among the l loci of the observed dataset. In agreement with this, only m loci with more than 
five reads will be retained in a simulated dataset. 

2.5 Prior distributions 

The Bayesian aspect of the ABC-RF approach implies that parameter estimations use prior knowledge about 
these parameters that is given by prior distributions of parameters. The program offers a choice among 
usual probability distributions, i.e. Uniform, Log-Uniform, Normal or Log-Normal for historical parameters 
and Uniform, Log-Uniform or Gamma for mutation parameters. Extremum values (min and max) and other 
parameters (e. g. mean and standard deviation) must be filled in by the user. It is worth noting that one can 
impose some simple conditions on historical parameters. For instance, there can be two times parameters 
with overlapping prior distributions. However, we want that the first one, say t1, to always be larger than 
the second one, say t2. For that, we just need to set t1>t2 in the corresponding edit-windows. Such a 
condition needs to be between two parameters and more precisely between two parameters of the same 
category (i.e. two effective sizes, two times or two admixture rates). The limit to the number of conditions is 
imposed by the logics, not by the program. The only binary relationships accepted here are <, >, ≤, and ≥. 

2.6 Summary statistics as components of the feature vector  
 
The training set includes values of a feature vector which is a multidimensional representation of any data 
point (i.e. simulated or observed datasets) made up of measurements (or features) taken from it. More 
specifically, the feature vector includes a large number of statistics that summarize genetic variation in the 
way that they allow capturing different aspects of gene genealogies and hence various features of molecular 
patterns generated by selectively neutral population histories (e.g. Beaumont 2010; Cornuet et al. 2014). For 
each category (microsatellite, DNA sequences or SNP) of loci, the program proposes a series of summary 
statistics among those used by population geneticists.  

Note: The code name of each statistic mentioned in the various program outputs is given between brackets 
[XXX] in sections 2.6.1, 2.6.2 and 2.6.3. 
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2.6.1 For microsatellite loci 

 
Single sample statistics: 
1. [NAL] - mean number of alleles across loci 
2.     [HET] - mean gene diversity across loci (Nei 1987) 
3.     [VAR] - mean allele size variance across loci 
4.     [MGW] - mean M index across loci (Garza and Williamson 2001; Excoffier et al. 2005) 

 
Two sample statistics: 
1. [N2P] - mean number of alleles across loci (two samples) 
2. [H2P] - mean gene diversity across loci (two samples) 
3. [V2P] - mean allele size variance across loci (two samples) 
4.     [FST] -𝐹𝐹𝑆𝑆𝑇𝑇 between two samples (Weir and Cockerham 1984) 
5.     [LIK] - mean index of classification (two samples)  

   (Rannala and Moutain 1997; Pascual et al. 2007) 
6.     [DAS] - shared allele distance between two samples (Chakraborty and Jin 1993) 
7.     [DM2] -  distance between two samples (Golstein et al. 1995) 
 
Three sample statistics: 
1. [AML] - Maximum likelihood coefficient of admixture (Choisy et al. 2004) 
 
2.6.2 For DNA sequence loci 

 
Single sample statistics: 
1. [NHA] - number of distinct haplotypes 
2. [NSS] - number of segregating sites 
3. [MPD] - mean pairwise difference 
4. [VPD] - variance of the number of pairwise differences 
5.     [DTA] - Tajima’s D statistics (Tajima 1989) 
6. [PSS] - Number of private segregating sites  

(=number of segregating sites if there is only one sample) 
7. [MNS] - Mean of the numbers of the rarest nucleotide at segregating sites 
8. [VNS] - Variance of the numbers of the rarest nucleotide at segregating sites 
 
Two sample statistics: 
1. [NH2] - number of distinct haplotypes in the pooled sample 
2. [NS2] - number of segregating sites in the pooled sample 
3. [MP2] - mean of within sample pairwise differences 
4. [MPB] - mean of between sample pairwise differences 
5.      [HST] -𝐹𝐹𝑆𝑆𝑇𝑇 between two samples (Hudson et al. 1992) 
 
Three sample statistics: 

1. [SML] Maximum likelihood coefficient of admixture (adapted from Choisy et al. 2004) 
 
2.6.3 For SNP loci 
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In addition to “standard” individual-sequencing SNP data (i.e. IndSeq data), the program allows the 
simulation and analyses of pool-sequencing SNP data (i.e. PoolSeq data), which basically consist of whole-
genome sequences of pools of tens to hundreds of individual DNAs (Gautier et al., 2013; Schlötterer et al., 
2014). For both IndSeq and PoolSeq SNPs, we have implemented the following (same) set of summary 
statistics.  
 
1.  [ML1p] [ML2p] [ML3p] [ML4p] - Proportion of monomorphic loci for each population, as well as for 

each pair, triplet and quadruplet of populations.  
 
Mean (m suffix added to the code name) and variance (v suffix) over loci values are computed for all 
subsequent summary statistics 
2.  [HWm] [HWv] [HBm] [HBv] - Heterozygosity for each population and for each pair of populations 

(Hivert et al. 2018).  
3. [FST1m] [FST1v] [FST2m] [FST2v] [FST3m] [FST3v] [FST4m] [FST4v] [FSTGm] [FSTGv] - FST-related 

statistics for each population (i.e., population-specific FST; Weir & Goudet 2017), for each pair, triplet, 
quadruplet and overall populations (when the dataset includes more than four populations) (Hivert 
et al. 2018).  

4.  [F3m] [F3v] [F4m] [F4v] - Patterson’s f-statistics for each triplet (f3-statistics) and quadruplet (f4-
statistics) of populations (Patterson et al. 2012 and Leblois et al. 2018 for the PoolSeq unbiased f3-
statistics)  

5.  [NEIm] [NEIv] - Nei’s (1972) distance for each pair of populations 
6.  [AMLm] [AMLv] - Maximum likelihood coefficient of admixture computed for each triplet of 

populations (adapted from Choisy et al. 2004). 

2.7 Generating the training set 
The training set can include as many scenarios as desired. The prior probability of each scenario is uniform 
so that each scenario will have approximately the same number of simulated datasets. Only parameters that 
are defined for the drawn scenario are generated from their respective prior distribution. Scenarios may or 
may not share parameters. When conditions apply to some parameters (see section 2.3), parameter sets are 
drawn in their respective prior distributions until all conditions are fulfilled. The simulated datasets 
(summarized with the statistics detailed in section 2.6) of the training set are recorded for further statistical 
analyses (using Random Forest algorithms) in a key binary file named reftableRF.bin.  

3. RANDOM FOREST ANALYSIS 

Once the training set has been generated, one can start various statistical treatments using the Random 
Forest (RF) algorithms implemented in the program and by running the “Random Forest analyses” module. 

3.1 Addition of linear combinations of summary statistics to the vector feature  
For scenario choice, the feature vector can be enriched before processing RF predictions (default option that 
can be disabled) by values of the d axes of a linear discriminant analysis (LDA) processed on the above 
summary statistics (with d equal to the number of scenarios minus 1; Pudlo et al. 2016). In the same spirit, 
for parameter estimation, the feature vector can be completed (default option that can be disabled) by 
values of a subset of the s axes of a Partial Least Squares Regression analysis (PLS) also processed on the 
above summary statistics (with s equal to the number of summary statistics). The number of PLS axes added 
to the feature vector is determined as the number of PLS axes providing a given fraction of the maximum 
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amount of variance explained by all PLS axes (i.e., 95% by default, but this parameter can be adjusted). Note 
that, according to our own experience on this issue, the addition into the feature vector of LDA or PLS axes 
better extract genetic information from the training set and hence globally improved statistical inferences. 
While the inferential gain turned out to be systematic and substantial for LDA axes (scenario choice), we 
found that including PLS axes improved parameter estimation in a heterogeneous way, with a negligible 
gain in some cases (e.g. Collin et al. 2020). 

3.2 Prediction using Random Forest: scenario choice 
For scenario choice, the outcome of the first step of RF prediction applied to a given target dataset is 
a classification vote for each scenario which represents the number of times a scenario is selected in a forest 
of n trees. The scenario with the highest classification vote corresponds to the scenario best suited to the 
target dataset among the set of compared scenarios. This first RF predictor is good enough to select the most 
likely scenario but not to derive directly the associated posterior probabilities. A second analytical step 
based on a second Random Forest in regression is necessary to provide an estimation of the posterior 
probability of the best supported scenario (Pudlo et al. 2016).  

3.3 Prediction using Random Forest: parameter estimation 
For parameter estimation, Raynal et al. (2019) extended the RF approach developed in the context of (non-
parametric) regression to estimate the posterior distributions of a given parameter under a given scenario. 
The approach requires the derivation of a new Random Forest for each component of interest of the 
parameter vector (i.e. “one parameter, one forest strategy”; Raynal et al. 2019). Quite often, practitioners of 
Bayesian inference report the posterior mean, posterior variance or posterior quantiles, rather than the full 
posterior distribution, since the former are easier to interpret than the latter. We implemented in DIYABC 
Random Forest the methodologies detailed in Raynal et al. (2019) to provide estimations of the posterior 
mean, variance, median (i.e. 50% quantile) as well as 5% and 95% quantiles (and hence 90% credibility 
interval) of each parameter of interest. The posterior distribution of each parameter of interest is also 
inferred using importance weights following Meinshausen (2006)’s work on quantile regression forests. 

3.4 Assessing the quality of predictions  
To evaluate the robustness of inferences, DIYABC Random Forest provides: 

(i) Global (i.e. prior) error/accuracy indices corresponding to prediction quality measures computed 
over the entire data space; 

(ii) Local (i.e. posterior) error/accuracy indices computed conditionally on the observed dataset and 
hence corresponding to prediction quality exactly at the position of the observed dataset.  

Note that the program used the out-of-bag prediction method for estimating global and local error/accuracy 
measures (Pudlo et al. 2016; Raynal et al. 2019; Chapuis et al. 2020). This method is computationally 
efficient as it makes use of the datasets already present in the training set and hence avoids the 
(computationally costly) simulations of additional test datasets. 
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3.4.1 Indices for scenario choice 

• Global prior errors including the confusion matrix (i.e. the contingency table of the true and predicted 
classes – here scenarios - for each example in the training set) and the mean misclassification error 
rate (over all scenarios). 

• Local posterior error which corresponds to 1 minus the posterior probability of the selected scenario 
(Chapuis et al. 2020).  

3.4.2 Indices for parameter estimation 

• Global (prior) and local (posterior) NMAE (i.e. normalized mean absolute error): it is the average 
absolute difference between the point estimate and the true simulated value divided by the true 
simulated value, with the mean or the median taken as point estimate. 

• Global (prior) and local (posterior) MSE and NMSE (i.e. the mean square error): it is the average 
squared difference between the point estimate and the true simulated value for MSE, divided by the 
true simulated value for NMSE, again with the mean or the median taken as point estimate. 

• Several confidence interval measures computed only at the global (prior) scale: 

- 90% coverage: it is the proportion of true simulated values located between the estimated 5% and 
95% quantiles. 

- Mean or median of the 90% amplitude: it is the mean or median of the difference between the 
estimated 5% and 95% quantiles. 

- Mean or median of the relative 90% amplitude: it is the mean or median of the difference between 
the estimated 5% and 95% divided by the true simulated value. 

4. PRACTICAL CONSIDERATIONS FOR ABC-RF TREATMENTS 
Random Forest is often (positively) considered as a “tuning-free” method in the sense that it does not 
require meticulous calibrations. This represents an important advantage of this method, especially for non-
expect users. In practice, we nevertheless advise users to consider several checking points, thereafter 
formalized as questions, before finalizing inferential treatments using DIYABC Random Forest v1.0. 

4.1 Are my scenarios and/or associated priors compatible with the observed dataset? 

This question is of prime interest and applies to ABC-RF as well as to any alternative ABC treatments. This 
issue is particularly crucial, given that complex scenarios and high dimensional datasets (i.e., large and 
hence very informative datasets) are becoming the norm in population genomics. Basically, if none of the 
proposed scenario / prior combinations produces some simulated datasets in a reasonable vicinity of the 
observed dataset, this is a signal of incompatibility and it is not recommended to attempt any inferences. In 
such situations, we strongly advise reformulating the compared scenarios and/or the associated prior 
distributions in order to achieve some compatibility in the above sense. DIYABC Random Forest v1.0 
proposes a visual way to address this issue through the simultaneous projection of datasets of the training 
database and of the observed dataset on the first Linear Discriminant Analysis (LDA) axes. In the LDA 
projection, the (target) observed dataset has to be reasonably located within the clouds of simulated 
datasets. The program also proposes some complementary dedicated tools: (i) a Principal Component 
Analysis (PCA) representing on 2-axes plans the simulated dataset from the training set and the observed 
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dataset; and (ii), for each summary statistics,  the proportion of simulated data (considering the total 
training set) that have a value below the value of the observed dataset. A star indicates proportions lower 
than 5% or greater than 95% (two stars, <1% or >1%; three stars, <0.1% or >0.1%). The latter numerical 
results can help users to reformulating the compared scenarios and/or the associated prior distributions in 
order to achieve some compatibility (see e.g. Cornuet et al. 2010). 

4.2 Did I simulate enough datasets for my training set? 

A rule of thumb is, for scenario choice to simulate between 2,000 and 20,000 datasets per scenario among 
those compared (Pudlo et al. 2016; Estoup et al. 2018), and for parameter estimation to simulate between 
10,000 and 100,000 datasets under a given scenario (Raynal et al. 2019; Chapuis et al. 2020). To evaluate 
whether or not this number is sufficient for RF analysis, we recommend to compute error/accuracy metrics 
such as those proposed by DIYABC Random Forest v1.0 from both the entire training set and a subset of the 
latter (for instance from a subset of 80,000 simulated datasets if the training set includes a total of 100,000 
simulated datasets). If error (accuracy) metrics from the subset are similar, or only slightly higher (lower) 
than the value obtained from the entire database, one can consider that the training set contains enough 
simulated datasets. If a substantial difference is observed between both values, then we recommend 
increasing the number of simulated datasets in the training set. 

4.3 Did my forest grow enough trees? 

According to our experience, a forest made of 500 to 2,000 trees often constitutes an interesting trade-off 
between computation efficiency and statistical precision (Breiman, 2001; Chapuis et al. 2020; Pudlo et al. 
2016; Raynal et al. 2019). To evaluate whether or not this number is sufficient, we recommend plotting 
error/accuracy metrics as a function of the number of trees in the forest. The shapes of the curves provide a 
visual diagnostic of whether such key metrics stabilize when the number of trees tends to a given value. 
DIYABC Random Forest v1.0 provides such a plot-figure as output. 

5. RUNNING (EXAMPLE) DATASET TREATMENTS USING THE GRAPHIC USER 
INTERFACE (GUI) 

5.1 Launching the GUI 

• The GUI can launch the program DIYABC Random Forest with the required parameters and keeps 
track of the progress of the latter through small log files. A given GUI session (window) allows 
working on a single project. Several GUI sessions (i.e. several windows) can be launched on a single 
computer hence allowing working on several projects in parallel. 

• Launch the GUI by clicking on the “DIYABC Random Forest” standalone application icon. 

It is worth stressing that the program can also be run locally as any shiny application using R. The main 
pipeline of DIYABC Random Forest v1.0 is divided into two main modules corresponding to the two main 
phases, i.e. the simulation and the statistical treatments:  

• Module 1 = “Training set simulation” where users specify how simulated data will be generated 
under the ABC framework to produce a training set. 
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• Module 2 = “Random Forest analysis” (necessitating the presence of a training set) which guides 
users through scenario choice and parameter inference by providing a simple interface for the 
supervised learning framework based on Random Forest methodologies.  

Note that an additional (second order) module named “Synthetic data file generation” is presently 
functional; but it will be available later from the GUI (i.e. in the coming month(s); cf. section 8). It can be used 
to easily generate data file(s) corresponding to synthetic “ground truth” raw data (not summarized through 
statistics) under a given historical scenario and a set of fixed parameter values, for instance for 
benchmarking purpose. The formats of such simulated data files are the same as those described in section 
7.1 for observed (i.e. real) datasets for which one usually wants to make inferences. 

5.2 What is a DIYABC Random Forest project? 

DIYABC Random Forest works with projects. A DIYABC Random Forest project is a unit of work materialized 
by a specific and unique directory that has been named by the users through the interface. A project includes 
at least one observed dataset and one header file associated to a (already generated or not) training set. The 
header file, always named headerRF.txt, contains all information necessary to compute a training set 
associated with the data: i.e. the scenarios, the scenario parameter priors, the characteristics of loci, the loci 
parameter priors and the list of summary statistics to compute using the Training set simulation module. As 
soon as the first records of the training set have been simulated, they are saved in the training set file, 
always named reftableRF.bin (to keep with the previous name of this key file in the previous standard 
DIYABC context).  

It is worth noting that if one needs to change a scenario or a parameter prior, or a summary statistics, a new 
project needs to be defined. This is to guarantee that all subsequent actions performed on the project are in 
coherence with the current data and header files. It is of course strongly advised NOT to manually move files 
among projects. Incidentally, the headerRF.txt file is only built when the project has been saved, the 
information progressively input by the user being saved in a series of temporary files. Once a sufficiently 
large training set has been simulated the different files can be (have to be) zip-saved by the user. Statistical 
analyses can then be performed using the Random Forest analysis module. The different output files 
produced by a Random Forest analysis can be (have to be) zip-saved by the user. 

5.3 Main options of the home screen 

When launching the GUI, the home screen appears like this: 
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• Access to main functionalities: you can access to the two main functionalities of the program (i.e. 
training set simulation and random forest analyses) in two ways: (i) by clicking on the “launch 
project” button in the middle of the panel or (ii) by clicking on the “DIYABC-RF main pipeline” button 
in the upper-left part of the panel. 

• Access to other functionalities:  

- To access to the panels allowing generating files corresponding to full in silico datasets (also called  
pseudo-observed datasets) click on the “Synthetic data file generation” button in the middle of the 
panel or on the “Synthetic data file generation” Button in the upper-left part of the panel. 

- Clicking on the “Preference” button (upper left) gives access to the following screen 
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The different options proposed are self-meaning. Default values can be changed by the user. Note that 
the loop-size option corresponds to the number of simulated datasets distributed over all computer 
threads and stored in RAM before writing them into the training set file (reftableRF.bin). 

5.4 How to generate a new IndSeq SNP training set 

5.4.1 Step 1: defining a new IndSeq SNP project 

Defining a new project requires different steps which are not strictly the same whether the data are 
microsatellites/DNA sequences (MSS) or SNP (IndSeq or PoolSeq). Let’s start with an IndSeq SNP project. 
Click on the “launch project” button in the middle of the panel. The following panel appears. 

 

• Enter a project name in the “Project name” window (here IndSeq_demonstration_project) 

• Select the project type (Microsat/sequence or SNP) and the sequencing mode (for SNP only; IndSeq 
or PoolSeq). Here select SNP and Individual Seq. 

• Click on the “New project” button as we want to implement a new project from scratch. 

5.4.2 Step 2: choosing the data file 

• Browse and choose a data file (an IndSeq format data file in this case) in the “Data file” window (here 
INDSNP_sim_dataset_4POP_001.snp). A short summary of the specificities of the loaded datafile 
appears: here the total number of loci (30000), the minimum allele frequency chosen for simulation 
(MAF=0.05), the sex ratio indicated by the user (NM=1NF), the total number of individuals and 
populations, and finally the locus type and their corresponding numbers (A= autosomal, 
M=mitochondrial,…; see section 7.1 for details about datafile format). 
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• A “Project set up is ok” message appears at the bottom of the panel if all items have gone correctly. 
You can then go the next steps. To go to the next step click on the large blue color “Training set 
simulation” “+” button”. The following panel appears. 
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5.4.3 Step 3: Inform the Historical model 

Click on the “Add” button of the “Define historical models” section. The following panel appears: 

 

Write the code of a first scenario (scenario 1) in the ”Describe your scenario” edit window. 

We get this: 
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• If we click on the “Draw scenario” button, the logic of the scenario is checked and if it is found OK, and 
if the scenario is draw-able, the drawing appears on a new frame (option available soon in the 
interface). The graphical representation of the scenario can be saved by clicking on the “Save image” 
button. 

• The “Priors and conditions” frame allows choosing the prior density of each parameter of the 
scenario. A parameter is anything in the scenario that is not a keyword (here sample, merge and 
split), nor a numeric value. In our example scenario, parameters are hence: N1, N2, N3, N4, ra, t21, 
t32 and t431. We choose a uniform distribution and change the min and max values of the different 
parameters (see panel below).  In our example, we need to set the priors on t21, t32 and t431 such 
that t21>t32 and t431<t32. 

 

To do this we write t21>t32 and t431<t32 on two successive lines in the “Condition setting” frame. As noted 
in the panel, conditions should have the following format: XX<YY. where ‘XX' and 'YY' are parameters of the 
same type. You can use the standard comparison signs: '>', '>=', '<', '=<'. It is worth stressing that the 
omission of such conditional constraints on merge times (cf. a population needs to exist in the past to allow 
coalescence events in it) is one of the most frequent implementation error made by DIYABC Random Forest 
users. If forgotten a message "Error in simulation process: check your scenarios, priors and conditions"" 
appears. Note that the occurrence of a too large number of time conditional constraints within a scenario 
may substantially slow down simulations as a valid t parameter vector will be retain and run only once all 
conditions are fulfilled. 

• We then can add some other scenarios in additional windows by clicking on the button “Add 
scenario” (one or several times if one wants to add a single or several other scenarios). In the present 
example, we simulate datasets from six different scenarios that we want to compare (see Collin et al. 
2020 for details), hence the six scenario windows that we have completed with instructions for each 
scenario. For the sixth scenario the panel looks like this: 
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Complete time conditions for the six scenarios are: t21>t32, t42<t21, t43<t32, t32>t423, t431<t32 and 
t421<t21 

5.4.4 Step 4: Inform number of loci to simulate (and chromosome type) 

Choose the number of SNP locus that you want to simulate for each chromosome type define in the data file 
(A for autosomal diploid loci, H for autosomal haploid loci, X for X-linked or haplo-diploid loci, Y for Y-linked 
loci and M for mitochondrial loci; see section 7.1.1). Here we have only type <A> SNP loci. According to our 
own experience, analyzing (evolutionary neutral) scenarios using 5000 to 20000 SNP loci is sufficient to 
obtain robust results. In this example, we choose to consider simulations based on a subset of 5000 SNP loci 
(with MAF=0.05 as indicated previously) taken in order from the first SNP locus of the data file, by replacing 
30000 by 5000 in the corresponding frame. Click on the button “Validate”.  

It is worth stressing that choosing a subset of 5000 SNP loci taken from the SNP locus 5001 of the data file 
would lead to a training set generated from a set of 5000 loci completely independent from the previous 
one. Generating by this way different training sets is a way to process independent analyses of a given 
dataset (a sufficiently large number of SNP loci available in the observed dataset is obviously needed to do 
that). 
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5.4.5 Step 5: Summary statistics 

In the present version of the program, all available summary statistics are computed. When you click on the 
buttom “(?)” on the right of the “Summary statistics” section of the interface, the following text message 
appears. 

WARNING! ALL SUMMARY STATISTICS IMPLEMENTED IN THE PROGRAM WILL BE COMPUTED AND 
INCLUDED IN THE TRAINING SET 
 
For both IndSeq and PoolSeq SNP loci, the following set of summary statistics has been implemented. 
 
1.  Proportion of monomorphic loci for each population, as well as for each pair and triplet of populations 

(ML1p, ML2p, ML3p) 
 
Mean and variance (over loci) values are computed for all subsequent summary statistics.  
2.  Heterozygosity for each population (HW) and for each pair of populations (HB) 
3. FST-related statistics for each population (FST1), for each pair (FST2), triplet (FST3), quadruplet 

(FST4) and overall (FSTG) populations (when the dataset includes more than four populations) 
4.  Patterson’s f-statistics for each triplet (f3-statistics; F3) and quadruplet (f4-statistics; F4) of 

populations  
5.  Nei’s distance (NEI) for each pair of populations 
6.  Maximum likelihood coefficient of admixture (AML) computed for each triplet of populations. 
 
Note the short code name for each type of summary statistics (MLP1p, HW, FST2, F3,…). Such code names of 
statistics (plus the suffix m and v for mean and variance over loci, respectively; see section 2.6.3) will be 
used in most files produced by the program, including the key files headerRF.txt, reftableRF.bin and 
statobsRF.txt. 
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5.4.6 Step 6: Simulate the training set 

You can access the “training set simulation” module by clicking on the corresponding + button on the far 
right of the box blue title bar “Training set simulation”. The following “Run” panel appears. 

 

• Indicate the required number of datasets to simulate in the training set: we here change the default 
value of 100 into 12000 (in order to simulate 2000 datasets for each of the six scenarios) 

• Launch the generation of the simulated datasets of the training set by clicking on the “Simulate” 
button. The number of datasets already simulated is given in the “Running simulation” progress bar 
below. 

• You can stop the generation of simulated datasets by clicking on the “STOP” button. Both a “Run 
succeeded” and “Simulation are done” labels appear when all requested simulations have been 
processed. 

• Do not forget to click on the “Save” button in the “Project housekeeping” lower panel to implement 
and save a concatenated .zip file including various input and output files (see section 7 for a 
description of the content of some of those files) on your computer. The name of the 
implemented/saved concatenated .zip file is the one given at the start in the “Project name” window. 
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• Warning: The button “Reset” in the “Project housekeeping” panel restart the pipeline from scratch 
removing all configurations previously set up and all data and result files generated. 

5.4.7 Step 7 (optional but recommended): Prior-scenario checking PRE-ANALYSIS 

Before performing a full ABC-RF analysis on a large size training set, we advise using the prior-scenario 
checking option on a training set of small size (e.g. including 500 to 1000 simulated dataset per scenarios). 
As a matter of fact, this pre-analysis option is a convenient way to reveal potential mispecification of models 
(scenarios) and/or prior distributions of parameters (and correct it). This action requires a training set file 
(`reftableRF.bin`) and a statobsRF.txt file either generated when clicking on 'Simulate' or uploaded with an 
existing project. When clicking on the button “Run” of the “Prior and scenario checking” option (see 
previous/above panel copy) the program will use the statobsRF.txt and reftableRF.bin files to generate two 
specific outputs: 

• A Principal Component Analysis (PCA) representing on 2-axes plans the simulated dataset from the 
training set and the observed dataset as graphical output. Note that this figure is somewhat similar in 
its spirit to the graphical output LDA_training_set_and_obs_dataset.png obtained when running the 
scenario choice option in “Random Forest Analyses”. The latter output is different, however, as it 
corresponds to the projection of the datasets from the training set linear discriminant analysis (LDA) 
axes (see section 7.3 for details). 

• A numerical output file, named pcaloc1_locate.txt, which includes for each summary statistics and for 
each scenario, the proportion of simulated data (considering the total training set) that have a 
summary statistics value below the value of the observed dataset. A star indicates proportions lower 
than 5% or greater than 95% (two stars, <1% or >1%; three stars, <0.1% or >0.1%). The presence of 
such star symbols is a sign of substantial mismatch between the observed dataset and the simulated 
datasets. The latter numerical results can help users to reformulating the compared scenarios and/or 
the associated prior distributions in order to achieve some compatibility (see e.g. Cornuet et al. 



30 
 

2010). If only a few stars are observed at a few summary statistics for one or several scenarios, one 
can conclude that prior-scenario conditions are suitable enough to further process Random Forest 
analysis, and this potentially on a training set including more simulated datasets. 

5.5 How to generate a new PoolSeq SNP training set 

Follow the same five steps described in section 5.4 for IndSeq SNPs. 

• Step 1: Defining a new PoolSeq SNP project  see section 5.4.1  

Click on the “Launch project” button of the home screen. Select SNP as project type and PoolSeq as 
sequencing mode  

• Step 2: Choosing the data file  see section 5.4.2 and select a dataset file characterized by a PoolSeq 
format (format detailed in section 7.1.2). 

• Step 3: Inform the Historical model  see section 5.4.3  

• Step 4: Inform chromosome type and number of loci  see section 5.4.4  

Note: The panel for PoolSeq SNPs is simpler than for IndSeq SNPs because PoolSeq SNPs are considered as 
located on autosomal chromosomes only. 

• Step 5: Summary statistics:  see section 5.4.5 

• Step 6: Simulate the training set  see section 5.4.6  

• Step 7 (optional but recommended): Prior-scenario checking PRE-ANALYSIS  see section 5.4.7 

5.6 How to generate a new microsatellite (and/or DNA sequence) training set 

Follow the same steps described in section 5.4 for IndSeq SNPs. 

• Step 1: Defining a new or microsatellites/DNA sequences project  see section 5.4.1  

Click on the “Launch project” button of the home screen. Select Microsat/Sequences as project type 
(not any sequencing mode is needed) 

• Step 2: Choosing the data file  see section 5.4.2 and select a dataset file characterized by a 
Microsatellite and/or DNA Sequences format (format detailed in section 7.1.3). 

• Step 3: Inform the Historical model  see section 5.4.3  

• Step 4: The panel “Inform chromosome type and number of loci” is replaced by the panel 
“Inform the genetic model”  see details below in section 5.6.1 

• Step 5: Summary statistics: different sets of summary statistics are computed as compared to 
SNP summary statistics  see details below in section 5.6.2 

• Step 6: Simulate the training set  see section 5.4.6  

• Step 7 (optional but recommended): Prior-scenario checking PRE-ANALYSIS  see section 5.4.7 
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5.6.1 Step 4: Inform the genetic model  

For microsatellite markers: Informing the genetic model can be done using the following 
panels (implemented here from our example complex microsatellites + DNA sequences 
example dataset). 

• First:  define the number of groups of markers (a group been define by different mutational 
modalities). By default, all microsatellite loci are grouped together, same for all DNA sequence loci. If 
you want to define more than one group then configure the number of groups (cf button “Add 
group”) before assigning loci to those groups. 

 

• Second : define the motif size and range of motif variation. By default, all microsatellite loci are 
supposed to be dinucleotidic (motif = 2) with a range of 40. 
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It is worth stressing that the values for motif size and allelic range are just default values and do not 
necessarily correspond to the actual data. The user who knows the real values for its data is required 
to set the correct values at this stage. If the range is too short to include all values observed in the 
analyzed dataset, a message appears in a box asking to enlarge the corresponding allelic range. Note 
that the allelic range is measured in number of motifs, so that a range of 40 for a motif length of 2 bp 
means that the difference between the smallest and the longest alleles should not exceed 80 bp. It is 
worth stressing that the indicated allelic range (expressed in number of continuous allelic states) 
corresponds to a potential range which is usually larger than the range observed from the analyzed 
dataset (cf. all possible allelic states have usually not been sampled). In practice it is difficult to assess 
the actual microsatellite constraints on the allelic range; to do that one needs allelic data from several 
distantly related populations/sub-species as well as related species which is rarely the case(see 
Pollack et al. 1998; Estoup et al. 2002). We achieved a meta-analysis from numerous primer notes 
documenting the microsatellite allelic ranges of many (i.e. > 100) different species (and related 
species). We used the corrective statistical treatment on such data proposed by (Pollack et al. 1998). 
Our results pointed to a mean microsatellite allelic range of 40 continuous states (hence the default 
allelic range value of 40 mentioned in the program). We also found, however, that range values 
greatly varied among species and among loci within species (unpublished results). We therefore 
recommend the following pragmatic behavior when considering the allelic range of your analysed 
microsatellite dataset: (i) if the difference in number of motif of your locus is < 40 motifs in the 
analysed dataset then leave the default allelic range value of 40. (ii) if the difference in number of 
motif of your locus is >40 motifs in your dataset then take Max_allele_size − Min_allele_size)/motif 
size + say 10 additional motifs to re-define the allelic range of the locus in the corresponding DIYABC 
panel (e.g. (200 nu − 100 nu)/2 + 10 = 50 + 10 = 60 as allelic range). 

• Third: adjust the prior specificities of mutational modalities as you want using the corresponding 
buttons in the panel below. Otherwise keep the default values as the latter have been reported for 
many eukaryote species (e.g. Estoup et al. 2002; but see Fraimout et al. 2017). 
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For DNA sequence markers: Informing the genetic model can be done using the following panels 
(implemented here from our example complex microsatellites + DNA sequences example dataset).  

• We need to define at least one group of DNA sequence loci.  
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• Suppose we want all DNA sequence loci in the same group because we consider that they all have 
similar mutational modalities. We put “2” in the button “Group” for all loci (Group 1 is for the 
previous microsatellite markers). Otherwise you can associate some loci to additional groups (after 
clicking on the button “Add group”) if you consider that such loci have different mutational 
modalities. 

• Adjust the prior specificities of mutational modalities as you want using the corresponding buttons in 
the panel below. Otherwise keep the default values as the latter have been reported for many 
eukaryote species (e.g. Cornuet et al. 2010). 

 

The default values are indicated in the panel. Note that the default mean mutation rate is not suited to 
mitochondrial DNA which generally evolves at a faster rate than nuclear DNA (Haag-Liautard et al., 
2008). So we set its value to 10-8. For all other mutation model parameters, one can just keep the 
default values. See section 2.4.2 “DNA sequence loci” for details about the mutation models proposed 
for DNA sequences. 

• Click on the button “Mutation model” to access and potentially select other mutation models 
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• Before launching a run to simulate the training set, do not forget to validate your microsatellite 
and/or DNA settings by clicking on the blue-color button “Validate”. Indicate the number of 
simulations in the corresponding button (here 30000) and click on the button “Simulate” to launch 
the simulation of the training set. 
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5.6.2 Step 5: Summary statistics 

In the present version of the program, all available summary statistics are computed. When you click on the 
buttom “(?)” on the right of the “Summary statistics” section of the interface (see previous panel-copy), the 
following text message appears. 

For microsatellite loci 

WARNING! ALL SUMMARY STATISTICS IMPLEMENTED IN THE PROGRAM WILL BE COMPUTED AND 
INCLUDED IN THE TRAINING DATASET 
 
For microsatellite loci, the following set of summary statistics has been implemented.  

 
Single sample statistics: 
1. mean number of alleles across loci (NAL) 
2. mean gene diversity across loci (HET) 
3. mean allele size variance across loci (VAR) 
3. mean M index across loci (MGW) 

 
Two sample statistics: 
1. mean number of alleles across loci (two samples) (N2P) 
2. mean gene diversity across loci (two samples) (H2P) 
3. mean allele size variance across loci (two samples) (V2P) 
3.𝐹𝐹𝑆𝑆𝑇𝑇 between two samples (FST) 
4. mean index of classification (two samples) (LIK) 
5. shared allele distance between two samples (DAS) 
6. distance between two samples (DM2) 
 
Three sample statistics: 
1. Maximum likelihood coefficient of admixture (AML) 

 

For DNA sequence loci 

WARNING! ALL SUMMARY STATISTICS IMPLEMENTED IN THE PROGRAM WILL BE COMPUTED AND 
INCLUDED IN THE TRAINING DATASET 
 
For DNA sequence loci, the following set of summary statistics has been implemented.  

 
Single sample statistics: 
1. number of distinct haplotypes (NHA) 
2. number of segregating sites (NSS) 
3. mean pairwise difference (MPD) 
4. variance of the number of pairwise differences (VPD) 
5. Tajima’s D statistics (DTA) 
6. Number of private segregating sites (PSS) 
7. Mean of the numbers of the rarest nucleotide at segregating sites (MNS) 
8. Variance of the numbers of the rarest nucleotide at segregating sites (VNS) 
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Two sample statistics: 
1. number of distinct haplotypes in the pooled sample (NH2) 
2. number of segregating sites in the pooled sample (NS2) 
3. mean of within sample pairwise differences (MP2) 
4. mean of between sample pairwise differences (MPB) 
 5.𝐹𝐹𝑆𝑆𝑇𝑇 between two samples (HST) 
 
Three sample statistics: 

1. Maximum likelihood coefficient of admixture (SML) 
 

5.7 How to work from an existing project (for any type of markers) 

Working from an existing project is particularly appealing when that one wants to: 

(i) objective 1: simply add more simulations in the training set of the reftableRF.bin of an existing project 
without changing anything in the headerRF.txt.  

 (ii) objective 2: use the headerRF.txt content of an existing project as a base to generate a new headerRF.txt 
file including different changes for instance in the scenarios formulated, in the definition of priors, the 
number of loci to simulate,…. Note that objective 2 is not available yet in the GUI but will be in a near future. 

Let’s consider that one wants to work from the IndSeq_demonstration_project previously generated (and 
including a training set with 12000 simulation records) as described in the above section 5.4. 

• Click on the “launch project” button in the middle of the panel. The following panel appears. 
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• Enter a project name in the “Project name” window (here 
“Using_Existing_IndSeq_Project_Demonstration”) 

• Select the project type (Microsat/sequence or SNP) and the sequencing mode (for SNP only; IndSeq 
or PoolSeq). As we will start from a pre-existing IndSeq project, select SNP and Individual Seq. 

• Click on the “Existing project” button of the ”Project type” item as we want to work from an existing 
project. 

• Use the browser of the ”Project files” item to select key files in the Existing project directory (here a 
directory named “IndSeq_demonstration_project”. Key files are headerRF.txt 
(mandatory), reftableRF.bin (if one simply wants to add more simulations in the training set of the 
reftableRF.bin of an existing project without changing anything in the headerRF.txt cf. objective 1 
above), and statobsRF.txt (optional). If the objective 2 is concerned then only the file headerRF.txt is 
needed (avoid loading the reftableRF.bin file as the latter might not be in agreement with the new 
headerRF.txt file that you will generate). Note that objective 2 is not available yet in the GUI but will be 
in a near future  

  

• Browse and choose a data file (an IndSeq format data file in this case) in the “Data file” window (here 
INDSNP_sim_dataset_4POP_001.snp). A short summary of the specificities of the loaded datafile 
appears: here the total number of loci (30000), the minimum allele frequency chosen for simulation 
(MAF=0.05), the sex ratio indicated by the user (NM=1NF), the total number of individuals and 
populations, and finally the locus type and their corresponding numbers (A= autosomal, 
M=mitochondrial,…; see section 7.1 for details about data file format). 

• A “Project set up is ok” message appears at the bottom of the panel if all items have gone correctly. 
You can then go the next steps. To go to the next step click on the large blue color “Training set 
simulation” “+” button”. The following panel appears. 
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The panel displays all information included in the headerRF.txt file (historical models, priors and 
conditions, number of SNP loci to simulate). Warning: such information cannot be changed. 

• Launch new simulations that will be added to those already present in the pre-existing training set 
(i.e. reftableRF.bin file). As we have already 12000 simulations in the initial reftableRF.bin file we put 
the number of simulation to a number > 12000 (here 24000). Then click on the button “Simulate”. 
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Warning: if the target is objective 2 (i.e. use the headerRF.txt content of an existing project as a base 
to generate a new headerRF.txt file including different changes for instance in the scenarios 
formulated, in the definition of priors, the number of loci to simulate,…) then a new reftableRF.bin file 
will be generated from scratch following the instruction included in the newly generated 
headerRF.txt file. Note that objective 2 is not available yet in the GUI but will be in a near future 

You can stop the generation of simulated datasets by clicking on the “STOP” button. A “Simulation 
terminated” label appears when all requested simulations have been processed. 

• Do not forget to click on the “Save” button in the “Project housekeeping” panel to implement and save 
a concatenated .zip file including various input and output files (see section 7 for a description of the 
content of some of those files) on your computer. The name of the implemented/saved concatenated 
.zip file is the one given at the start in the “Project name” window. 

 

• You might want to launch the optional but recommended option “Prior and scenario checking”. For 
details see section 5.4.7. 

• Warning: The button “Reset” in the “Project housekeeping” panel restart the pipeline from scratch 
removing all configurations previously set up and all data and result files generated 

6. PERFORMING RANDOM FOREST ANALYSES 

6.1 Files needed 

Three files are needed at this stage:  

• the file headerRF.txt which describes the full settings of the generation of the training set 
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• the training set file reftableRF.bin (generated from the headerRF.txt file),  

• the file statobsRF.txt which corresponds to the values of the summary statistics computed for the 
observed dataset and which was generated when producing the headerRF.txt and reftableRF.bin files. 

• Note: although not necessary per se for Random Forest analyses as the later only need the 
statobsRF.txt file as data point to analyze, the SNP data file has to be present or loaded using the 
corresponding “Data file” browser. 

• These files are already available following an in-course (and terminated) training set 
simulation or they can be loaded independently by clicking on the “Existing project” button 
and using the browser of the ”Project files” item. 

 

 

6.2. Scenario choice analysis 

• Click on the large orange color “Random Forest Analyses” button (“+” on the right). The following 
panel appears. 
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• Activate the “Scenario choice” button in the mode setting (button activated by default). The observed 
dataset that will be analyzed is the one described in the file “statobsRF.txt”. 

• Click on the button “Check input”: Useful information about the training set (cf. reftableRF.bin file) 
content is provided (nbr of scenarios, total nbr of simulated datasets, nbr of simulated dataset 
available per scenario, nbr of parameters, nbr of summary statistics).  
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Modify the RF analysis settings in the following frames or keep default settings 

 

• Indicate the number of samples (i.e. simulated datasets) in the training set to consider for analyses 
(default = 0 = total number of simulated datasets available in the training set). This number should be 
lower or equal to the total number of simulated datasets available in the training set. See section 4.2 
for useful insights about this number. 

• Indicate the number of noise variables to add (default = 5). Noise variables (corresponding to values 
randomly drawn into uniform distributions bounded between 0 and 1) allows evaluating which 
components of the feature vector (i.e. summary statistics) are informative (see section 7.3 and Collin 
et al. 2020 for details). 

• Enable/disable the addition of  linear combinations axes (LDA for model choice) (default = enable) 

• You may 'group' your models in several groups. For example if you have six models, labeled from 1 to 
6, you can specify '1,2,3;4,5,6' to make 2 groups of 3. Leave blank to not group scenarios and analyzed 
them separately (see Collin et al. 2020). (default = blank). Note that if you write ‘1;3;5’ then the RF 
scenario choice analysis will concern only the scenarios 1, 3 and 5 of the training set. 

• Indicate the number of tress in the forest (default = 500). See section 4.3 for useful insights about this 
number. 

• Click on the button “RUN” to launch the RF scenario choice analysis 
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• Follow the progress bar. You can stop the RF analysis by clicking on the “STOP” button. A “RF run 
succeeded” label appears when the RF analysis has been entirely processed. 

• Do not forget to click on the “Save” button in the “Project housekeeping” panel to implement and save 
a concatenated .zip file including various input and output files (see section 7 for a description of the 
content of some of those files) on your computer. The name of the implemented/saved concatenated 
.zip file is the one given at the start in the “Project name” window. 

• Warning: The button “Reset” in the “Project housekeeping” panel restart the pipeline from scratch 
removing all configurations previously set up and all data and result files generated. 

6.3. Parameter estimation analysis 

• Click on the large orange color “Random Forest Analyses” button (“+” on the right).  

• Activate the “Parameter estimation” button in the mode setting. The panel then looks like this. 
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• Click on the button “Check input”: Useful information about the training set (cf. reftableRF.bin file) 
content is provided (nbr of scenarios, total nbr of simulated datasets, nbr of simulated dataset 
available per scenario, nbr of parameters, nbr of summary statistics).  

 

Modify the RF analysis settings in the following frames or keep default settings 
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• Indicate the Scenario ID number for parameter estimation (default = 1) 

• Indicate the name of the parameter to estimate: a list of parameter names available for estimation 
according to the header and training set files is provided. Give a single name or a combination of 
names as explained in the interface. One analysis has to be processed for each parameter of interest. 

• Indicate the number of simulated datasets in the training set to consider for analyses (default = 0 = 
total number of simulated datasets available in the training set). This number should be lower or 
equal to the total number of simulated datasets available in the training set for the scenario of 
interest. Here we put this number to 10000. See section 4.2 for useful insights about this number. 
Indicate the number of noise variables to add (default = 5) 

• Indicate the number of noise variables to add (default = 5). Noise variables (corresponding to values 
randomly drawn into uniform distributions bounded between 0 and 1) allows evaluating which 
components of the feature vector (i.e. summary statistics) are informative (see section 7.3 and Collin 
et al. 2020 for details). 
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• Enable/Disable the addition of  linear combinations axes (PLS for parameter estimation) (default = 
enable) 

• Indicate the threshold of percentage of explained variance by the PLS components you will keep in 
the analysis (default = 0.95) 

• Indicate the number of out-of-bag (oob) testing samples (default = 10 but a minimum of 1000 oob 
testing samples is often necessary to obtained stable estimation of accuracy indices; see section 
3.4.2). This number should be equal or lower to the number of datasets available in the training set 
for the scenario under study. 

• Indicate the number of tress in the forest (default = 500). See section 4.3 for useful insights about this 
number. 

• Click on the button “RUN” to launch the parameter estimation analyses focusing on the single 
parameter (or parameter combination) indicated above. 
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• Follow the progress bar. You can stop the RF analysis by clicking on the “STOP” button. A “RF run 
succeeded” label appears when the RF analysis has been entirely processed. 

• Do not forget to click on the “Save” button in the “Project housekeeping” panel to implement and save 
a concatenated .zip file including various input and output files (see section 7 for a description of the 
content of some of those files) on your computer. The name of the implemented/saved concatenated 
.zip file is the one given at the start in the “Project name” window. 

• Warning: The button “Reset” in the “Project housekeeping” panel restart the pipeline from scratch 
removing all configurations previously set up and all data and result files generated. 

7. KEY FILES 
The program uses and produces various files which we will describe now. 

7.1 Data files  

7.1.1 IndSeq SNP data 

The data file format includes: 

• A first line (headline) providing the sex-ratio as above (e.g. 𝑁𝑁𝑁𝑁 = 1.0𝑁𝑁𝐹𝐹 >), the required MAF 
(minimum allele frequency criterion; e.g. MAF=0.05 or MAF=hudson>), and any text that can be used as 
a title. The sex ratio of the analyzed species is noted under the form <NM=rNF>, in which r is the ratio of 
the number of females per male (e.g. <NM=2.5NF> means that the number of males is 2.5 times the 
number of females; for a balanced sex ratio one should write <NM=1.0NF>). The MAF is computed 
pooling all genes genotyped over all studied population samples. For instance, the specification of a 
MAF equal to 5% (i.e. MAF=0.05) will automatically select a subset of m loci characterized by a 
minimum allele frequency  5% among the l locus of the observed dataset. In agreement with this, only 
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m locus with a MAF>5%. Writing <MAF = Hudson> (or omitting to write any instruction with respect to 
the MAF) will bring the program to use the standard Hudson’s algorithm without further selection; see 
also the above section 2.4.2. 

• A second line starting with the three keywords IND SEX POP, separated by at least one space, followed 
by as many letters as SNP loci, the letter giving the location of the locus as above A for autosomal 
diploid loci, H for autosomal haploid loci, X for X-linked (or haplo-diploid) loci, Y for Y-linked loci and M 
for mitochondrial loci. Letters are separated by a single space. 

• As many lines as there are genotyped individuals, with the code-name of the individual, a letter (M or F; 
or 9 if the sex of the individual is unknown) indicating its sex, and a code-name for its population. A 
genotype is defined by the values 0, 1 or 2 which correspond to the number of the (arbitrarily 
chosen) reference allele composing the genotype at each SNP locus. For instance in the case 
autosomal diploid SNP loci (denoted A), we have: 2 = homozygous genotype for the reference allele (cf. 
2 copies of the reference allele), 1 = heterozygous genotype (cf. 1 copy of the reference allele), and 0 = 
homozygous genotype for the variant allele, with 0 copy of the reference allele. It is worth noting that 
for autosomal haploid loci (denoted H), as well as for mitochondrial loci (denoted M) and Y-linked loci 
(denoted Y), the SNP genotypes will be 0 or 1, which is coherent with our logic of defining a genotype 
according to the number of the reference allele composing the genotype. 

• Missing SNP genotypes are noted 9 for all type of SNP loci. 

• Only a subset of the SNP loci included in the data file can be considered (selected) in the simulations 
and hence in subsequent analyses, without modifying the original dataset. For instance one can choose 
to select in the corresponding panel the SNP loci 1 to 1000 of a data file including a total of say 10000 
loci (see the above section 5.4.4). This allows running faster simulations and processing independent 
replicate analyses of sets of 1000 SNP loci by considering loci 1 to 1000 and then 1001 to 2000, and so 
on, in separate analyses. 

• Following Hudson’s (2002) criterion, only polymorphic SNP loci (over the entire dataset) are 
considered. Monomorphic SNP loci (over the entire dataset) are automatically filtered by the program. 
It is preferable, however, that the user removes himself all monomorphic loci from his/her (observed) 
dataset before submitting it to DIYABC Random Forest. 

• Before running any simulation, DIYABC Random Forest provides a text file including the set of SNP loci 
selected from the observed dataset (e.g. polymorphic loci 1 to 1000 with a MAF=0.05). This file is 
named “UserDataFileName.bin.txt”. 

EXAMPLE 

In our example below, the species is diploid, has an unbalanced sex ration the sex-ratio as above (i.e. 
<NM=1.5NF>) and two of its populations were genotyped at 23 SNP loci: 20 autosomal loci, 1 X-linked locus, 
1 Y-linked locus and 1 mitochondrial locus. The first line provides the title which includes the species sex-
ratio and the MAF (minimum allele frequency). The second line indicates: individual name in column 1, 
individual sex in column 2 (M for male, F for female, 9 or any other letter if unknown), population name in 
column 3 and one column per SNP locus (letter A for an autosomal locus, X for an X-linked locus, Y for a Y-
linked locus and M for a mitochondrial locus). Columns are separated by one or more spaces. SNP genotypes 
are coded 0, 1 or 2 (9 for missing data) according to the number of reference alleles at the corresponding 
locus. Note that the sex has no influence on simulations for autosomal, mitochondrial or haploid loci (any 
sex can be hence declared). For individuals with an unknown sex (denoted 9, see IND P1_2, P1_3 and 
P2_15), data for autosomal (as well as mitochondrial and haploid) loci will be taken into account and 
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simulated. On the other hand, the genotypes of X-linked and Y-linked loci for the same IND P1_2, P1_3 and 
P2_15 with unknown sex cannot be safely determined and are hence noted 9 for missing data (i.e. they are 
not simulated). 

 

7.1.2 PoolSeq SNP data 

The data file format includes: 

• A first line (headline) providing the sex-ratio of the analyzed species (e.g.<NM=1.0NF>), the required 
MRC (minimum read count criterion; e.g. <MRC=5>), and any text that can be used as a title. The sex 
ratio is noted under the form <NM=rNF>, in which r is the ratio of the number of females per male (e.g. 
<NM=2.5NF> means that the number of males is 2.5 times the number of females; for a balanced sex 
ratio one should write <NM=1.0NF>). The MRC is the number of sequence reads of the minor allele 
frequency allele when pooling the reads over all population samples. The specification of a MRC equal 
for instance to 5 (as in the present example) will automatically select a subset of m PoolSeq loci 
characterized by more than five reads over all studied pools among the l loci of the observed dataset. 
For instance the first locus of the list (cf. third line of the file) will not be selected. In agreement with 
this, only m loci with more than five reads will be retained in a simulated dataset. We advise using MRC 
values of 2, 3, 4 or 5. 

• Remember that (in contrast to IndSeq SNP) only PoolSeq SNPs located on autosomal chromosomes of 
diploid individuals can be considered by the program. 

• A second line provides the haploid sample size of each population pool.   

• The following lines correspond to the PoolSeq SNP genotypes (given in read counts). Each line 
represents a SNP and each pair of columns points to a population pool in the same order as in the 
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second line. For each SNP-pool combination, the number of read counts is indicated for the first and 
second allele in the first and second column, respectively.  

• Warning: no missing data (i.e. “0 0” data; cf. no read count for any allele) is allowed in the PoolSeq data 
file and this for any pools in the data file. 

• We advise to put only SNP loci with a coverage > 10 reads for each analyzed pool of the dataset in order 
to ensure descent allele frequency estimation within each pool. SNP loci with an abnormally high 
coverage should be also removed as those loci can be duplicated loci. 

• Only a subset of the SNP loci included in the data file can be considered (selected) in the simulations 
and hence in subsequent analyses, without modifying the original dataset. For instance one can choose 
to select in the corresponding panel the SNP loci 1 to 1000 of a data file including a total of say 10000 
loci (see the above section 5.4.4). This allows running faster simulations and processing independent 
replicate analyses of sets of 1000 SNP loci by considering loci 1 to 1000 and then 1001 to 2000, and so 
on, in separate analyses. 

EXAMPLE 

In our example below, the species is diploid and was genotyped using the PoolSeq technology at several 
thousands of autosomal SNPs in four population pools; only the first 13 SNPs are shown here for sake of 
concision.  The species sex-ratio is balanced and hence equal 1 and the MRC (minimum read count) is 5. 
Each population pool is composed of 100 diploid individuals (haploid sample size = 200).  The second line 
provides the haploid sample size of each population pool. It has to start with the explicit terminology POOL 
POP_NAME:HAPLOID_SAMPLE_SIZE. Here the haploid sample size is 200 for each “POPx”. Note that you can 
write any sample name, e.g. MONTPELLIER, instead of POPx.  Columns are separated by one or more spaces. 
Each line represents a SNP (hence the 13 lines) and each pair of columns points to a population pool (hence 
the 4 pairs of column). For each SNP-pool combination, the number of read counts is indicated for the first 
and second allele in the first and second column, respectively. For instance, we have 2 reads of the first allele 
and 114 reads of the second allele for the first SNP genotyped in the POOL-POP3. Note that because the 
MRC=5 several SNP of the present example data file, e.g. the first SNP for which only two read counts are 
present over all pools, will not be selected when generating simulated datasets. 
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7.1.3 Microsatellite and DNA sequence data 

The data file format is an extended format of the file used in the classical population genetics program 
Genepop (Rousset et al. 1995). The additional features are: 

• In the title line appears the sex ratio noted 𝑁𝑁𝑁𝑁 = 𝑟𝑟𝑁𝑁𝐹𝐹 >, in which 𝑟𝑟 is the ratio of the number of 
females per male (𝑡𝑡.𝑔𝑔. 𝑁𝑁𝑁𝑁 = 2.5𝑁𝑁𝐹𝐹 > means that the number of males is 2.5 times the number of 
females; for a balanced sex ratio one should write 𝑁𝑁𝑁𝑁 = 1.0𝑁𝑁𝐹𝐹 >). Since the title is generally only 
copied, this addition should not interfere with other programs using Genepop datafiles. Also if there 
is no such sex ratio addition, DIYABC will consider by default that NM=1.0NF. 

• After the locus name, there is an indication for the category of the locus which is 𝐴𝐴 > for autosomal 
diploid loci, 𝐻𝐻 > for autosomal haploid loci, 𝑋𝑋 > for X-linked (or haplo-diploid) loci, 𝑌𝑌 > for Y-linked 
loci and 𝑁𝑁 > for mitochondrial loci. If no category is noted, DIYABC will consider the locus as 
autosomal diploid or autosomal haploid depending on the corresponding genotype of the first typed 
individual. 

• Genotypes of microsatellite loci are noted with six digit numbers if diploid (e.g. 190188 for a 
heterozygous genotype with one allele 190 and one allele 188, and 200200 for a homozygous 
genotype with two alleles 200) and by three digit numbers (e.g. 190) if haploid. The three digit 
numbers corresponds to the length in nucleotides of the corresponding PCR products. 

• Sequence locus are noted between  and  . In addition each sequence alleles/haplotypes is noted 
between brackets. For instance, a haploid sequence locus will be noted GTCTA> and a diploid 
sequence locus GTCTAGTCTT>. Sequences may contain undetermined nucleotides which will be 
denoted "N " or " - ". Note that all sequence alleles/haplotypes have to be of same length. The length 
of shorter sequence allele/haplotypes needs to be adjusted to the larger sequence allele/haplotype 
by adding "N " or " - " symbols at the end of the sequences. It is worth stressing that, at a given locus, 
only the portion of the sequence shared by all individuals of the dataset will be used for computing 
summary statistics. We therefore advise removing locus-individual sequence data with too many “N” 

<NM=1.0NF> <MRC=5> Title/comment here 

POOL POP_NAME:HAPLOID_SAMPLE_SIZE POP1:200 POP2:200 POP3:200 POP4:200 

    0 93    0 100    2 114    0 139 

   52 60    29 66   45 61     18 75 

   38 69    38 61   54 45     63 29 

    1 98    0 115   0 91      0 83 

    5 83    0 78    0 93      0 108 

    0 94    5 107   0 102     0 108 

    1 105   0 113   0 105     0 80 

    0 100   0 108   0 95      1 112 

    6 82    0 107   1 132     0 92 

    0 101   3 98    0 101     0 82 

   18 95    24 65   36 64     22 85 

   19 67    7 109   5 96      43 61 

    2 115   0 95    11 88      0 89 
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and replace them by missing data. Finally, remember that this version of the program does not 
consider insertion-deletion mutations, mainly because there does not seem to be much consensus on 
this topic. 

• Missing microsatellite genotypes are noted 000 if haploid or 000000 if diploid. 
• Missing sequence alleles/haplotypes are noted [ ] > if haploid or [ ][ ] > if diploid. 
• Missing data are taken into account in the following way. For each appearance of a missing genotype 

in the observed dataset, the program records the individual and the locus. When simulating datasets, 
the program replaces the simulated genotype (obtained through the coalescence process algorithm) 
by the missing data code at all corresponding locations. All summary statistics are thus computed 
with the same missing data as for the observed dataset. WARNING: data files with virtually any 
amount of missing data can be analyzed by DIYABC Random Forest. However, for each locus a 
minimum of one genotyped individual per population is required. This is because summary statistics 
cannot be computed at a given locus in a given population if only missing data are present. 

EXAMPLES 

Example 1:  the example dataset below includes two population samples, each of 12 diploid individuals (8 
females and 4 males in the first sample and 5 females and 7 males in the second sample). As deduced from 
the letter between  and  on the locus name lines (see page 25), these individuals have been genotyped at 3 
microsatellite loci (1 autosomal 𝐴𝐴 >, 1 X-linked 𝑋𝑋 > and 1 Y-linked 𝑌𝑌 >) and 3 DNA sequence loci (1 
autosomal. 1 X-linked and 1 mitochondrial 𝑁𝑁 >). The species sex-ratio, given in the title line, is of three 
males for one female (𝑁𝑁𝑁𝑁 = 3𝑁𝑁𝐹𝐹 >) or in other words, the number of males equals three times the number 
of females. 

 
Example 2: in this second example, the species is haploid. Individuals have been genotyped at three 
autosomal microsatellite loci and one mitochondrial DNA sequence locus. The species being haploid 
(deduced from the presence of autosomal haploid loci), no indication of the sex-ratio appears in the title line. 
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7.2 Training set file(s) 

Training set files are binary files which include two successive parts: 

• The first file is a header (named headerRF.txt) which contains information necessary to read the 
second part (file), such as the number of scenarios, or the number of parameters of each scenario. 

• The second file (named reftableRF.bin) corresponds to the training set per se, as this file contains 
simulated dataset records, each record containing on the same line the scenario number, the parameter 
values and summary statistics values. 

Each time a training set (reftableRF.bin) is created or increased (each time the training set “Run” button is 
pressed), two text files are created in the project directory: 

• statobsRF.txt: this text file contains the values of summary statistics for the observed data set. 

• first_records_of_the_reference_table_X.txt in which X is an integer number starting at 0 and 
increasing each time the training set “Run” button is pressed. This file provides a text version of the 
first 𝑛𝑛 newly created records of the training set reftableRF.bin (𝑛𝑛 being equal to the Particle loop size, 
see section 3.7.3). 

7.3 Output files produced by a Random Forest analysis 
DIYABC Random Forest provides various numerical and graphical outputs. The integration of the various 
graphical outputs is managed with the ggplot2 R package (Wickham 2016), allowing user to create and 
export high-quality graphics related to the analyses. Non-graphical outputs are saved in text files. Graphs are 
saved as images, and user can choose the image format among png, jpg, etc. Once a Random Forest analysis 
is terminated, Do not forget to click on the “Save” button in the “Project housekeeping” panel to implement 
and save a concatenated .zip file including various input and output files (see section 7 for a description of 
the content of some of those files) on your computer. The name of the implemented/saved concatenated .zip 
file is the one given at the start in the “Project name” window. 

We now describe all the files produced by each Random Forest analysis. 

 

Scenario choice analysis 

• Numerical outputs 
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abcranger_mod_choice_call.log: log files with votes and posterior probability of the selected (i.e. best) 
scenario (i.e. model). 

modelchoice_out.settings: this file summarizes the settings associated to the RF analysis processed for 
scenario choice. 

modelchoice_out.confusion: mean misclassification error rate and confusion matrix (i.e. the contingency 
table of the true and predicted classes for each example in the training set). These indices are computed 
using the out-of-bag (a.k.a. out-of-bootstrap or OOB) training data as free test dataset. 

modelchoice_out.prediction: votes, prediction of the selected scenario and posterior probability of the 
selected scenario (i.e. model). 

modelchoice_out.ooberror: Evolution of prediction power relatively to the number of trees in the forest. 
Line number is the number of trees. Power is the global (prior) error rate for scenario choice with the mean 
taken as point estimate (computed using OOB). See the file modelchoice_out_graph_error_versus_ntrees.png 
for a graphical representation. 

modelchoice_out.importance: variables importance (sorted) which correspond to the contributions of the 
statistics to the Random Forest when choosing among scenarios. The variable importance of each statistics 
is computed as the mean decrease of impurity across the trees, where the impurity measure is the Gini 
index. Note that the scale is irrelevant: only the relative values matter. The variable importance was 
computed for each of the summary statistics provided by DIYABC Random Forest, plus the LDA axes 
(denoted LD) if they have been added to the feature vector. The higher the variable importance the more 
informative is the statistic. Variable importance of noise variables (denoted NOISEx and corresponding to 
values randomly drawn into uniform distributions bounded between 0 and 1) are also provided. Such noise 
variable can be added to the feature vector processed by RF in order to evaluate the threshold of variable 
importance values below which components of the vector are not informative anymore. More details about 
summary statistics including their code names can be found in section 2.6.3. Population index(s) are also 
indicated at the end of each statistics. See Collin et al. 2020 for examples. See the file 
modelchoice_out_graph_variable_importance.png for a graphical representation. 

modelchoice_out.lda:  coordinates for the projection of the datasets from the training set and from the 
observed dataset on the first two linear discriminant analysis (LDA) axes when analyzing more than two 
scenarios (models) and on a single LDA axis when analyzing a pair of scenarios (or two groups of scenarios); 
See the file modelchoice_out_graph_lda.png for a graphical representation. 

• Graphical outputs 

modelchoice_out_graph_lda.png: Projection of the datasets from the training set on the first two linear 
discriminant analysis (LDA) axes when analyzing more than two scenarios (models) and on a single LDA 
axis when analyzing a pair of scenarios (or two groups of scenarios). The location of the observed dataset in 
the LDA projection is indicated by a star symbol or a vertical line. Graphical representation obtained from 
the text file modelchoice_out.lda; see also Figure 2 in Collin et al. 2020. 

modelchoice_out_graph_error_versus_ntrees.png: Evolution of prediction power relatively to the number 
of trees in the forest. Graphical representation obtained from the text file modelchoice_out.ooberror ; see 
also Figure S1 in Collin et al. 2020. 

modelchoice_out_graph_variable_importance.png: Contributions of the 40 most informative statistics 
(including LDA axes if computed) to the Random Forest when choosing among scenarios. Graphical 
representation obtained from the text file modelchoice_out.importance; see also Figure 3 in Collin et al. 
2020. 
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Parameter estimation analysis 

• Numerical outputs 

abcranger_param_estim_call.log: this log files contains the main outputs of parameter estimation 
(including predictions and accuracy of estimation indices). 

estim_param_out.settings: this file summarizes the settings associated to the RF analysis processed to 
estimate a given parameter 

estim_param_out.predictions: expectation, median, quantiles 0.05, quantile 0.95, and variance for 
prediction of parameter estimation 

estim_param_out.ooberror: Evolution of prediction power relatively to the number of trees in the forest. 
Line number is the number of trees. Power is the global (prior) mean squared error with the mean taken as 
point estimate (computed using OOB). See the file estim_param_out_graph_error_versus_ntrees.png for a 
graphical representation. 

estim_param_out.oobstats: this file contains various accuracy indices of parameter estimation (computed 
using OOB). Both global (prior) error indices and Local (posterior) error indices are provided (see Collin et 
al. 2020 for details). 

estim_param_out.importance: variables importance (sorted) which correspond to the contributions of the 
statistics to the Random Forest when processing parameter estimation. The variable importance of each 
statistics is computed as the mean decrease of impurity across the trees, where the impurity measure is the 
residual sum of squares. Note that the scale is irrelevant: only the relative values matter. The variable 
importance was computed for each of the summary statistics provided by DIYABC Random Forest, plus the 
PLS axes (denoted Comp.) if they have been added to the feature vector. The higher the variable importance 
the more informative is the statistic. Variable importance of noise variables (denoted NOISEx and 
corresponding to values randomly drawn into uniform distributions bounded between 0 and 1) are also 
provided. Such noise variable can be added to the feature vector processed by RF in order to evaluate the 
threshold of variable importance values below which components of the vector are not informative 
anymore. More details about summary statistics including their code names can be found in section 2.6.3. 
Population index(s) are also indicated at the end of each statistics. See Collin et al. 2020 for examples. See 
the file estim_param_out_graph_variable_importance.png for a graphical representation. 

estim_param_out.predweights: pairs of parameter value - weight value inferred during prediction. Such 
pairwise values can be used to do density plot of parameter estimation. See the file 
estim_param_out_graph_density_plot.png for a graphical representation. 

If a Partial Least Squares Regression analysis (PLS) is processed on the summary statistics then two additional 
output files are provided. 

estim_param_out.plsvar: variance explained by number of the c selected PLS components (from 
component 1 to c, with c the number of PLS axes providing a given fraction of the maximum amount of 
variance explained by all PLS axes - 95% by default-). 

estim_param_out.plsweights: weight of each variable (i.e. summary statistics) for the first PLS component 
(sorted by absolute value) 

• Graphical outputs 



57 
 

estim_param_out_graph_density_plot.png: density plot graphical representation for the estimated 
parameter (obtained from the text file estim_param_out.predweights). 

estim_param_out_graph_error_versus_ntrees.png: Evolution of prediction power relatively to the 
number of trees in the forest. Graphical representation obtained from the text file 
estim_param_out.ooberror; see also Figure S1 in Collin et al. 2020. 

estim_param_out_graph_variable_importance.png: Contributions of the 50 most informative statistics 
(including PLS axes if computed) to the Random Forest when choosing among scenarios. Graphical 
representation obtained from the text file estim_param_out.ooberror; see also Figure 3 in Collin et al. 2020. 

7.4 Other files 

The program writes several additional files in the saved project directory: 

diyabcGUI_proj.txt: this file contain the project name 

diyabc_run_call.log: this text file contains information about the first steps of the training set production, 

including the reading of the observed data file and the interpretation of the headerRF.txt file. 

reftable.log: this file contains information about the progress of computations (achieved number of 

records) 

RNG_state_0000.bin: this binary file contains the current state of the random generator. 

diyabc_seed_init_call.log: this text file contains information about the initialization of the random 

generator 

8. GENERATING SYNTHETIC DATAFILES 
Warning: This option might not be active at the moment when using the GUI. It will be soon activated and it 
will be described with more details in a coming soon version of the manual. 

An additional module named “Synthetic data file generation” (based on the DIYABC simulation engine) is 
available in DIYABC Random Forest v1.0. It can be used to easily generate datafile(s) for various types of 
genetic markers corresponding to synthetic “ground truth” raw data (not summarized through statistics) 
under a given historical scenario and a set of parameter values fixed by the user. Such pseudo-observed 
dataset do not refer to any (actual) observed dataset. The formats of the generated datafiles are similar 
to those of the observed input datafiles read by DIYABC Random Forest v1.0 (see sections 7.1.1, 7.1.2 
and 7.1.3). 

To access to the panels allowing generating files corresponding to full in silico datasets (also called  pseudo-
observed datasets) click on the “Synthetic data file generation” button in the middle of the main panel of the 
GUI or on the “Synthetic data file generation” Button in the upper-left part of the same panel. 
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The following panels are similar to those detailed in the sections 5.4 (IndSeq data), 5.5 (PoolSeq data) and 
5.6 (microsatellite and/or DNA sequence data). They allow defining a scenario, fixing prior values for 
historical (and genetic) parameters, and the number of loci to simulate. Those panels are completed by two 
additional panels aiming at indicating the sample sizes for each population (with the proportion of males 
and females in each sample), the sex ratio of the studied species, and the number of datafiles that one want 
to simulate. 

9. USING DIYABC RANDOM FOREST ON A COMPUTER CLUSTER  
The computing effort is considerably reduced for ABC Random Forest, as the method requires a 
substantially smaller training set compared to ABC methods (e.g., a few thousands of simulated datasets 
versus hundreds of thousands of simulations per scenario for most ABC approaches; Blum & François, 2010; 
Fraimout et al., 2017; Pudlo et al., 2016; Raynal et al., 2019). Given the ever-increasing dimensionality of 
modern genetic data generated using NGS technologies, this is a particularly appealing property of this 
method. Your personal computer or some small local server should hence represent sufficient computer 
resources to run most of your DIYABC Random Forest analyses in a descent time. However, in some cases 
(for instance when very large SNP datasets have to be simulated), it might be useful to take advantage of a 
computer grid cluster, especially to generate the training set (i.e. the file reftableRF.bin). 

To do this (i.e. generate the reftableRF.bin training set), load from the DIYABC Random Forest github 
site https://diyabc.github.io/) the diyabc v3.0 binary (executable) file corresponding to your Operating 
System. You can also compile locally the diyabc v3.0 sources (also available at https://diyabc.github.io/) to 
obtain your own binary. Then run this binary by using command line instructions with parameters as 
detailed at https://diyabc.github.io/. Such command lines can be embedded in a bash script adapted to your 
cluster system. 

The sources and various binary versions of the program abcranger, which corresponds to Random 
Forest inference engine part of the program DIYABC Random Forest, are also available at 
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https://diyabc.github.io/. The program abcranger can also be run through command line instructions with 
parameters as detailed in https://diyabc.github.io/. Again, such command lines can be embedded in a bash 
script adapted to your cluster system. However, this is less crucial as Random Forest treatments with abcranger 
(using a given training set) are much more rapid than the generation of the training set with diyabc v3.0 (e.g. Collin 
et al. 2020). 

It is worth stressing that abcranger is not limited to population genetics applications as the program 
can be used as a Random Forest inference engine independently from the diyabc simulator. However, for the 
moment, the binary standalone used by the DIYABC Random Forest interface handles only outputs produced 
by the diyabc simulator. A python wrapper (and example notebooks) is available 
at https://diyabc.github.io/ and a R wrapper will be soon provided at the same site. 
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