DIYABC

version 2.1

A user-friendly software for inferring population history through Approximate Bayesian Computations

using

^a microsatellite, DNA sequence and SNP data

J.M. Cornuet, P. Pudlo, J. Veyssier, Etienne Loire, Filipe Santos, A. Dehne-Garcia and A. Estoup

Centre de Biologie et de Gestion des Populations Institut National de la Recherche Agronomique 755 avenue du Campus Agropolis, CS 30016 34988 Montferrier-sur-Lez cedex, France (diyabc@supagro.inra.fr)

July 10, 2015

1

2

3

6

7

Contents

2	1.	Prefac	e	1
3		1.1	General context and history of DIYABC	1
4		1.2	References to cite	3
5		1.3	Web site	7
6		1.4	System requirements	7
7		1.5	How to create (and send) a bug report	7
8		1.6	Acknowledgements	7
9	2.	Metho	bology	3
10		2.1	Basic notions on ABC	3
11		2.2	Historical model parameterization	3
12		2.3	Mutation model parameterization (microsatellite and DNA sequence loci) 13	3
13			2.3.1 Microsatellite loci	3
14			2.3.2 DNA sequence loci	3
15		2.4	SNPs do not require mutation model parameterization	1
16		2.5	Prior distributions	1
17		2.6	Algorithms for data simulation : main features	5
18		2.7	Summary statistics	3
19			2.7.1 for microsatellite loci $\ldots \ldots \ldots$	3
20			2.7.2 for DNA sequence loci	3
21			2.7.3 for SNP loci	7
22		2.8	Pre-evaluation of scenarios and prior distributions 17	7
23		2.9	Estimation of posterior distributions of parameters	3
24		2.10	Model checking	3
25		2.11	Measures of performances)
26		2.12	Comparison of scenarios)
27			2.12.1 Reference table)
28			2.12.2 Posterior probability of scenarios)

1			2.12.3	Confidence in scenario choice	21
2	3.	The G	raphic Us	er Interface	22
3		3.1	What is	a DIYABC Project ?	22
4		3.2	Options	of the home screen	22
5		3.3	Defining	a new project	23
6			3.3.1	Step 1 : choosing the data file	24
7			3.3.2	Inform the Historical model	26
8			3.3.3	Inform the Genetic model	29
9		3.4	Building	the reference table \ldots	33
10		3.5	Performi	ng analyses	34
11			3.5.1	ABC parameter estimation	38
12			3.5.2	Bias and precision	43
13			3.5.3	Model Checking	51
14			3.5.4	Posterior probabilities of scenarios	55
15			3.5.5	Confidence in scenario choice	58
16		3.6	Simulatin	ng data sets	66
17		3.7	The $Sett$	ings option of the File menu	79
18			3.7.1	Tab "various"	81
19			3.7.2	Tab "appearance"	83
20			3.7.3	Tab "cluster"	84
21			3.7.4	Tabs "MM Microsats" and "MM Sequences"	85
22	4.	Impler	nentation	details	87
23		4.1	Software	design	87
24		4.2	Files		87
25			4.2.1	data files	87
26			4.2.2	reference table files	87
27			4.2.3	output files	87
28		4.3	Missing o	lata	90
29		4.4	Data file	s	90
30	5.	Cluste	r version		95
31		5.1	Using a o	cluster with DIYABC	95
32			5.1.1	Configuring distribution of the workload on the cluster $\ldots \ldots \ldots$	95
33			5.1.2	Dealing with the job scheduler of the cluster $\ldots \ldots \ldots \ldots \ldots \ldots$	96
34			5.1.3	Transfer the bundle to the cluster and run it	96
35			5.1.4	Transfer back the reference table and include it into your computer project	97

DIYABC v2.1

1	5.2	Advices to distribute the workload on a cluster	98
2	5.3	A detailed description of each job	98
3	5.4	A note on the random number generators	99

¹ 1. Preface

² 1.1 General context and history of DIYABC

In less than 10 years, Approximate Bayesian Computations (ABC) have developed in the Population Ge-3 netics community as a new tool for inference on the past history of populations and species. Compared to other approaches based on the computation of the likelihood which are still restrained to a very narrow 5 range of evolutionary scenarios and mutation models, the ABC approach has demonstrated its ability to 6 stick to biological situations that are much more complex and hence realistic. However, this approach 7 still requires numerous computations to be performed so that it has been used mostly by specialists 8 (i.e. statisticians and programmers). This has almost certainly restrained the possible impact of ABC 9 in population genetic studies. We believe that this situation must be improved and therefore we have 10 developed a computer program for the large community of experimental biologists. We therefore designed 11 DIYABC as a user-friendly program allowing non specialist biologists to achieve their own analysis. The 12 first version (DIYABC v0.x) had been written especially for microsatellite data. There were at least 13 two reasons for that. The first one is that we have been among the first to develop and use this class 14 of markers in population genetic studies (e.g. Estoup et al., 1993). Since then, we have developed mi-15 crosatellites in numerous species as well as we have published theoretical studies and reviews on these 16 markers (e.g. Estoup et al., 2002). The second reason is that microsatellites have been and still are very 17 popular markers in the population geneticist community and there is now a large quantity of data that 18 might benefit of an ABC approach. The second version of our software (DIYABC v1.x) has been 19 designed to make use of DNA sequence data. This has several immediate consequences. For instance, 20 the standard Genepop data file format has been extended to incorporate sequence data. This has been 21 22 done in collaboration with the authors of *Genepop* and explained in subsection 4.1.1. In this version, sequence loci are considered in the same way as microsatellite loci, i.e. they are considered as genetically 23 independent and intra-locus recombination is not (yet) available. Regarding mutation models for DNA 24 sequences, we used the same philosophy as for microsatellites, i.e. the program considers only simple and 25 widely used models, keeping in mind that a higher-dimensional parameter space will be less well explored 26 than a lower-dimensional space. Note that none of these mutation models includes insertion-deletions. 27 Also five categories of loci (either microsatellites or DNA sequences) were considered in this second ver-28 sion : autosomal diploid, autosomal haploid, X-linked, Y-linked and mitochondrial. Note that X-linked 29 loci can be used for an haplo-diploid species in which both sexes have been sampled. If non-autosomal 30 loci have been typed in population samples, the sex-ratio of the species will have to be provided (see 31 subsection 4.1.1). 32

- 33 34
 - Other improvements over version 0 included :
- the use of multithread technology in order to exploit multicore/multiprocessor computers. This
 is especially useful when building the reference table and for several other intensive computation
 steps, such as the multinomial logistic regression,
- 28 2. a new option which helps the detection of "bad" prior modelisation of the data,
- 3. another new option which helps evaluate the goodness of fit of a given model-parameter posterior
 40 combination (i.e. Model checking),
- 4. many new screens implemented not only to treat sequence data, but also to cope with the new 42 options described above, as well as to offer useful complementary information on the current run.

The third version of DIYABC (DIYABC v2.x) has been entirely recoded in order to be used under the usual three OS (Linux, Windows and Mac). Also the code for computations has been separated from that of the graphic user interface (GUI). The former has been rewritten in C++ and the latter is a mixture of Python and Qt (PyQt). The user can then launch computations with or without using the GUI. The GUI 's uses are :

- ⁴⁸ 1. the management of projects
- ⁴⁹ 2. the input of the historical and genetical models
- ⁵⁰ 3. the parameterization of analyses
- 4. the launch of computations of the reference table and of the various required analyses

¹ 5. the visualization of results

Also, as DNA sequences have been added in the second version, a new category of markers has been added to the third version : Single Nucleotide Polymorphisms (SNPs). Instead of extending once more the Genepop format, a new data simple format has been designed for these markers. Note that SNP data are treated separately from other markers (*i.e.* they cannot be analyzed together with microsatellite and/or DNA sequence data). It is worth noting that, in the present version of the program, the analysed SNP data are assumed to correspond to independent selectively-neutral loci, without any ascertainment bias (i.e. the deviations from expected theoretical results due to the SNP discovery process in which a small number of individuals from selected populations are used as discovery panel).

11

This version includes all improvements of version 1.x and a few new improvements such as :

- loci of the same type (i.e. microsatellites on one hand or DNA sequences on the other hand) can
 be associated in one or more groups. This allows for instance to define different mutation models
 for microsatellites with motifs of different lengths.
- the model checking option is now presented as a direct option (not a suboption of the ABC estimation of parameters) which largely simplifies its use.
- the logistic regression can be performed on linear discriminant analysis components instead of all summary statistics. This reduces the number of dependent variables, thus allowing to run large
 "confidence in scenario choice" analyses including many summary statistics and scenarios (Estoup et al., 2012).

The latest version of the program (DIYABC v2.1.0) includes the following major improvements: (i) new analysis options to compute error / accuracy indicators conditionally to the observed dataset, (ii) possibility to specify a MAF (minimum allele frequency) criterion on the analyzed SNP datasets, and (iii) optimization of the simulation process of SNP datasets that include a substantial amount of missing data.

1. New analysis options to compute error / accuracy indicators conditionally to the observed dataset. 26 The program DIYABC allows evaluating the confidence in scenario choice and the accuracy of parame-27 ter estimation under a given scenario using simulated pseudo-observed datasets (pods), for which the true 28 scenario ID and parameter values are known. So far such pods were drawn randomly into prior distribu-29 tions for both the scenario ID and the parameter values. By doing so, we estimate global error/accuracy 30 levels computed over the whole (and usually huge) data space defined by the prior distributions. These 31 indicators hence actually correspond to "prior" error rates (when evaluating the confidence in scenario 32 choice) or "prior" precision measures (when evaluating the accuracy of parameter estimation under a 33 given scenario). The levels of error/accuracy may be substantially different depending on the location of 34 an observed or pseudo-observed dataset in the prior data space. Indeed, some peculiar combination of 35 parameter values may correspond to situations of strong (weak) discrimination among the compared sce-36 narios or of accurate (inaccurate) estimation of parameter values under a given model. Aside from their 37 use to select the best classifier and set of summary statistics, prior-based indicators are, however, poorly 38 relevant since, for a given dataset, the only point of importance in the data space is the observed dataset 39 itself. Computing error / accuracy indicators conditionally to the observed dataset (i.e. focusing around 40 the observed dataset by using the posterior distributions) is hence clearly more relevant than blindly com-41 puting indicators over the whole prior data space as done so far. This is basically what DIYABC v2.1.0 42 proposes to do with several new analysis sub-options available within the options "Evaluate confidence in 43 the scenario choice" and "Compute bias and precision on parameter estimations". Indeed, one can now 44 choose to compute a "posterior" error rate (when evaluating the confidence in scenario choice) by drawing 45 the scenario ID and parameter values of a large number of pods from the s simulated datasets closest 46 to the observed dataset (i.e. the s datasets with the smallest Euclidean distance). Typically, s = 50047 (when simulating 10,000 to 1 million datasets per compared scenario) but this number can be lowered to 48 100. In the same vein, one can now choose to compute "posterior" accuracy indicators (when evaluating 49 the accuracy of parameter estimation under a given scenario) by drawing the parameter values of a large 50 number of pods among the parameter posterior distributions estimated under a given scenario using a 51 standard ABC procedure. Note that we found, using controlled genetics experiments, that posterior error 52 (accuracy) measures could strongly differ from prior error (accuracy) measures, hence making a case of 53 the significance of computing error (accuracy) measures conditionally to the observed dataset rather than 54 blindly computing such measures over the whole prior data space (unpublished results and see Pudlo et 55 56 al. 2015).

6

15

2. Possibility to specify a MAF (minimum allele frequency) criterion on the analyzed SNP datasets. 1 Compared to other types of molecular markers, SNP loci have low mutation rates, so that polymor-2 phism at such loci results from a single mutation during the whole population(s) gene tree and genotypes 3 are bi-allelic. To generate a simulated polymorphic dataset at a given SNP locus, we proceeded following

the algorithm proposed by Hudson (2002) (cf -s 1 option in the program ms associated to Hudson, 2002).

Briefly, the genealogy at a given locus of all genes sampled in all populations of the studied dataset is

simulated until the most recent common ancestor according to coalescence theory. Then a single mutation event is put at random on one branch of the genealogy (the branch being chosen with a probability 8 proportional to its length relatively to the total gene tree length). This algorithm provides the simulation 9 efficiency and speed necessary in the context of ABC, where large numbers of simulated datasets including 10 numerous SNP loci have to be generated (Cornuet et al. 2014). Most importantly, using the Hudson's 11 simulation algorithm is equivalent to applying a default MAF (minimum allele frequency) criterion on 12 the simulated dataset. As a matter of fact, each locus in both the observed and simulated datasets will be 13 characterized by the presence of at least a single copy of a variant over all genes sampled from all studied 14 populations (i.e. pooling all genes genotyped at the locus). In DIYABC v2.1.0, it is possible to impose a

different MAF criterion for each locus on the observed and simulated datasets. This MAF is computed 16 pooling all genes genotyped over all studied population samples. For instance, the specification of a MAF 17 equal to 5% will automatically select a subset of m loci characterized by a minimum allele frequency >18 5% among the l locus of the observed dataset. In agreement with this, only m locus with a MAF>5% 19 will be retained in a simulated dataset (simulated loci with a MAF < 5% will be discarded). In practice, 20

the instruction for a given MAF has to be indicated directly in the headline of the observed dataset. For 21 instance, if one wants to consider only loci with a MAF equal to 5% one will write $\langle MAF=0.05 \rangle$ in the 22 headline. Writing <MAF=hudson> (or omitting to write any instruction with respect to the MAF) will 23 bring the program to use the standard Hudson's algorithm without further selection as done so far in 24 the previous version of DIYABC. The selection with DIYABC v2.1.0 of a subset of loci fitting a given 25 MAF allows: (i) to remove the loci with very low level of polymorphism from the dataset and hence 26 increase the mean level of genetic variation of both the observed and simulated datasets, without pro-27 ducing any bias in the analyses; and (ii) to reduce the proportion of loci for which the observed variation 28 may correspond to sequencing errors. In practice MAF values <10% are considered. To check for the 29 consistency/robustness of the ABC results obtained, it may be useful to treat a SNP dataset considering 30

different MAFs (for instance MAF=hudson, MAF=0.01 and MAF=0.05). 31

3. Optimization of the simulation process of SNP datasets that include a substantial amount of missing 32 data. 33

We have radically changed our way to take into account missing data for SNP datasets (i.e. missing 34 genotypes denoted "9" in the data file). The initial way to deal with missing data turned out to be poorly 35 efficient in term of computation time, especially when the number of SNP missing data was large which 36 seems to be the case for many real SNP datasets. The new code we have implemented to deal with this 37 issue is particularly efficient and makes it feasible to simulate in a reasonable time large SNP datasets 38 including (or not) numerous missing data. 39

Finally, as for DIYABC v1, the most recent versions of DIYABC v2 (v2.0 and v2.1) deals with sexually 40 reproducing diploid or haploid species (co-dominant markers corresponding to autosomal, X-linked, Y-41 linked loci) but does not allow considering species reproducing clonally. 42

For all versions of DIYABC, we recommend non-expert users to use the GUI for their computations. 43

1.2References to cite 44

• version 0 : Cornuet J.M., F. Santos, M.A. Beaumont, C.P. Robert, J.M. Marin, D.J. Balding, 45 T. Guillemaud and A. Estoup. 2008. Inferring population history with DIYABC: a user-friendly 46 approach to Approximate Bayesian Computations. Bioinformatics, 24 (23), 2713-2719. 47

• version 1 : Cornuet J.M., V. Ravignize and A. Estoup, 2010. Inference on population history 48 and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0)49 (2010) BMC Bioinformatics, 11, 401. 50

• version 2 : Cornuet, J-M., Pudlo, P., Veyssier, J., Dehne-Garcia A., Gautier M., Leblois R., Marin 51 J-M, and A. Estoup, 2014. DIYABC v2.0: a software to make approximate Bayesian computation 52 inferences about population history using single nucleotide polymorphism, DNA sequence and mi-53 crosatellite data. Bioinformatics. Vol. 30, no. 8, p1187–1189, doi: 10.1093/bioinformatics/btt763. 54

1.3 Web site

- ² http://www1.montpellier.inra.fr/CBGP/DIYABC
- ³ You can get there executable files for different operating systems as well as the last version of this detailed
- ⁴ notice document.

5 1.4 System requirements

- DIYABC should run on any linux flavour, Microsoft Windows XP and Seven and OS x 10.5 (intel)
 or later.
- Minimum 4GB of RAM; 6GB of RAM recommended
- 70MB free disk space for DIYABC binaries
- From 1 to 10GB free disk space for each project depending on the project configuration and the records number in the reftable file.

¹² Caveat : it is possible that on windows 32bits (and sometimes on windows 64bits) the reference table file ¹³ will not grow more than 4Go. We hope to be able to circumvent this constraint soon on windows 64bits.

¹⁴ 1.5 How to create (and send) a bug report

DIYABC V2 provides an easy way to send to the program developers the different files and clues that 15 are necessary to attempt solving a bug. Click on the âHelpâ menu. Then go on the âCreate bug reportâ 16 tab. You then just need to following the few instructions we give you at this stage, validate and save 17 the created bug report tarred file somewhere on your computer. Please send the bug report file to the 18 indicated email address (DIYABC@supagro.inra.fr). Two remarks here: (i) the bug you describe has to 19 be the last things that you did with the program; and (ii) please try to reproduce your bug one time and 20 then create and send the bug report. Finally, it had to be noted that if the bug completely crash the 21 application then no bug report can be created. We will do our best to solve your bug thanks to the bug 22 report you provided us. 23

²⁴ 1.6 Acknowledgements

We thank Mark Beaumont who has been at the origin of our interest for ABC. He offered us constant 25 help and inspiration since the beginning. We also thank David Balding who welcomed one of us (JMC) 26 in his team during the whole writing of the program and who organized several workshops on ABC 27 during the same period. We are indebted to Christian Robert, Jean-Michel Marin, Stuart Baird, Thomas 28 Guillemaud, Renaud Vitalis, Gael Kergoat, Gilles Guillot and David Welsh with whom we discussed 29 many theoretical and practical aspect of DIYABC in the numerous meetings financed by a grant from 30 the French Research National Agency (project *MISGEPOP* ANR-05-BLAN-196). The same grant 31 is also aknowledged for having paid for the 2-year salary of FS. This research was also supported by 32 an EU grant awarded to JMC as an EIF Marie-Curie fellowship (project StatInfPopGen) and which 33 allowed him to come to David Balding's place at Imperial College (London, UK). Current and future 34 developments of DIYABC are financed by a new grant from the French Research National Agency (project 35 EMILE ANR-09-BLAN-0145) awarded in september 2009. We thank several abeta-usersa, especially 36 Eric Lombaert, Michael Fontaine, Christophe Plantamp, Marie-Pierre Chapuis, Carine Brouat, RaphaAl 37 Leblois and Thomas Guillemaud, who tested the the DIYABC V2 software with their data. 38

¹ 2. Methodology

² 2.1 Basic notions on ABC

Approximate Bayesian Computation or ABC is a bayesian approach in which the posterior distributions 3 of the model parameters are determined by replacing the computation of the likelihood (probability of observed data given the values of the model parameters) by a measure of similarity between observed 5 and simulated data. The posterior distributions are estimated from parameter values providing simulated data that are the most similar to observed data. Historically, different ways of estimating this similarity have been proposed, but all have been based on statistics summarizing information conveyed by the data 8 set. In population genetics, data most often relate to individuals that have been genotyped at a given set q of loci, these individuals being representative of the studied populations. The summary statistics are for 10 instance the mean number of alleles per population or genetic distances between pairs of populations. It is 11 much easier to measure the similarity between small sets of summary statistics than between large sets of 12 multilocus genotype data. When the number of summary statistics is low, it is possible to select simulated 13 data for which all the summary statistics are close to those of the observed data (Pritchard et al., 1999; 14 Estoup et al., 2001; Estoup and Clegg, 2003). However, for more complex scenarios necessitating a larger 15 number of summary statistics, it becomes almost impossible to find such simulated data sets. Beaumont 16 et al. (2002) have hence proposed to measure similarity through the Euclidian distance between observed 17 and simulated summary statistics, after normalization by standard deviations of simulated statistics. In 18 addition, these authors introduced a step of weighted local linear regression aimed at favoring simulated 19 data sets that are closer to the observed one. 20 In practice, the ABC approach can be summarized in three successive steps (Excoffier et al., 2005): 21 22 i) generating simulated data sets, ii) selecting simulated data sets closest to observed data set and iii) estimating posterior distributions of parameters through a local linear regression procedure. 23 In addition, this approach provides a way of comparing different models (hereafter named scenarios) that 24 can explain observed data. Two measures of posterior probabilities of scenarios are proposed. The first 25

measure is simply the relative proportion of each scenario in the simulated data sets closest to observed

²⁷ data sets (Miller *et al.*, 2005; Pascual *et al.*, 2007). The second measure is obtained by a logistic regres-

28 sion of each scenario probability on the deviations between simulated and observed summary statistics

²⁹ (Fagundes *et al.*, 2007; Beaumont, 2008).

30

In order to simulate data, one has first to define one (or possibly several) scenario(s). Each scenario includes a historical model describing how the sampled populations are connected to their common ancestor and a mutational model describing how allelic states of the studied genes are changing along their genealogical trees.

35

³⁶ 2.2 Historical model parameterization

The evolutionary scenario, which is characterized by the historical model, can be described as a succession 37 in time of "events" and "inter event periods". The events considered in the program are a restricted set 38 39 of possible events affecting populations evolution. In the current version of the program, we consider only 4 categories of events : population divergence, discrete change of effective population size, admixture and 40 sampling (the last one has been added to allow considering samples taken at different times). Between two 41 successive events affecting a population, we assume that populations evolve independently (e.g. without 42 migration) and with a fixed effective size. The usual parameters of the historical model are the times 43 of occurrence of the various events (counted in generations), the effective sizes of populations and the 44 admixture rates. When writing the scenario, events have to be coded sequentially backward in time 45 (see section 2.5 Prior Distribution when time priors are overlapping). Although this choice may not 46 be natural at first sight, it is coherent with coalescence theory on which are based all data simulations 47 in the program. For that reason, the keywords for a divergence or an admixture event are merge and 48 split, respectively. Two other keywords, varNe and sample, correspond to a discrete change in effective 49 population size and a gene sampling, respectively. 50

⁵¹ A scenario takes the form of a succession of lines (one line per event), each line starting with the time of

⁵² the event, then the nature of the event, and ending with several other data depending on the nature of

⁵³ the event. Following is the syntax used for each category of event :

⁵⁴ **population sample** : $\langle time \rangle$ sample $\langle pop \rangle \langle time \rangle$ is the time (always counted in number of generations) ⁵⁵ at which the sample was taken and $\langle pop \rangle$ is the population number from which is taken the sample. It is worth stressing here that samples are considered in the same order as they appear in the data file.

- 3
- ⁴ population size variation : $\langle time \rangle$ varNe $\langle pop \rangle \langle Ne \rangle$
- ⁵ From time $\langle time \rangle$, looking backward in time, population $\langle pop \rangle$ will have an effective size $\langle Ne \rangle$.

⁶ population divergence : $\langle time \rangle$ merge $\langle pop0 \rangle \langle pop1 \rangle$

At time $\langle time \rangle$, looking backward in time, population $\langle pop1 \rangle$ "merges" with population $\langle pop0 \rangle$. Hereafter, only $\langle pop0 \rangle$ "survives".

9 population admixture : $\langle time \rangle$ split $\langle pop0 \rangle \langle pop1 \rangle \langle pop2 \rangle \langle rate \rangle$

- At time $\langle time \rangle$, looking backward in time, population $\langle pop0 \rangle$ "splits" between populations $\langle pop1 \rangle$
- and $\langle pop2 \rangle$. A gene lineage from population $\langle pop0 \rangle$ joins population $\langle pop1 \rangle$ (respectively $\langle pop2 \rangle$)
- with probability $\langle rate \rangle$ (respectively 1- $\langle rate \rangle$).

A historical model is a succession of lines as described above. However, in order to cope with special situations (see explanations in Note 9 below), we added a first line giving the effective sizes of sampled populations before the first event described, looking backward in time. Expressions between arrows, other than population numbers, can be either a numeric value (e.g. 25) or a character string (e.g. t0). In the latter case, it is considered as a parameter of the model. So the only possible parameters of the historical model are times of events, effective population sizes and admixture rates.

The program offers the possibility to add or remove scenarios, by just clicking on the corresponding buttons. The usual shortcuts (CTRL+C, CTRL+V and CTRL+X) can be used to edit the different scenarios. Some or all parameters can be in common among scenarios.

- 22
- 23 Notes

There are two ways of giving a fixed value to effective population sizes, times and admixture rates.
 Either the fixed value appears as a numeric value in the scenario windows or it is given as a string
 value like any parameter. In the latter case, one gives this parameter a fixed value by choosing a
 Unifom distribution and setting the minimum and maximum to that value in the prior setting (see
 section 2.4).

- 29 2. All expressions must be separated by at least one space.
- 3. All expressions relative to parameters can include sums or differences. For instance, it is possible to write :
- 32 t0 merge 2 3
- t0+t1 merge 1 2

This means that t1 is the time elapsed between the two events. By imposing t1>0 (as explained in section **prior and posterior distributions**), this implies that the divergence of populations 1 and 2 is always more ancient than the divergence of populations 2 and 3. However, one cannot mix a parameter and a numeric value (e.g. t1+150 will result in an error). This can be done by writing t1+t2 and fixing t2 by choosing a uniform distribution with lower and upper bounds both equal to 150.

- 40 4. Time is always given in generations. Since we look backward, time increases towards past.
- 5. Negative times are allowed (e.g. the example given in section 3), but not recommended.
- 6. Population numbers must be consecutive natural integers starting at 1. The number of population can exceed the number of samples and vice versa : in other words, unsampled populations can be considered in the scenario on one hand, and the same population can be sampled more than once on the other hand.
- 7. Multi-furcating population trees can be considered, by writing several divergence events occurring at the same time. However, one has to be careful to the order of the merge events. For instance, the following piece of generation will foil :
- ⁴⁸ the following piece of scenario will fail :
- ⁴⁹ 100 merge 1 2
- 50 100 merge 2 3
- ⁵¹ This is because, after the first line, population 2, which has merged with population 1, does not

"exist" anymore (the surviving population is population 1). So, it cannot receive lineages of population 3 as it should as a result of the second line. The correct ways are either to put line 2 before line 1, or to change line 2 to :

4 100 merge 1 3.

8. Since times of events can be parameters, the order of events can change according to the values taken by the time parameters. In any case, before simulating a data set, the program sorts out events by increasing times ¹. If two or more events occur at the same time, the order is that of the scenario as it is written by the the user.

9. Most scenarios begin with sampling events. We then need to know the effective size of the populations to perform the simulation of coalescences until the next event concerning each population.
One way would have been to provide the population size on the same line of the scenario description.
However, in some scenarios with varying population sizes, it can not be determined what is the effective size at the sampling time before the set of time parameter values is generated. For that
reason, we decided to provide the effective size and the sampling description on two distinct lines.

Examples Below are some usual scenarios with increasing complexity. Each scenario is coded on the left side and a graphic representation given by DIYABC is printed on the right side

- One population from which several samples have been taken at various generations : 0, 3 and 10.
 The only unknown parameter of the scenario² is the effective population size.
- 19

20

2. Two populations of size N1 and N2 have diverged t generations in the past from an ancestral pop-2. ulation of size N1+N2.

	Scenario 1 (Warning † Time is not to scale.) N1 N2 N1+N2 (Warning † Time is not to scale.)
N1 N2 O sample 1	
0 sample 2 t merge 1 2 t varNe 1 N1+N2	(ša 1) Pop 1 (ša 2) Pop 2 0

¹Sorting events by increasing times can only be done when all time values are known, i.e. when simulating datasets. When checking scenarios, all time values are not yet defined, so that when visualizing a scenario, events are represented in the same order as they appear in the window used to define the scenario.

²Of course, there are also one or more parameter(s) for the mutation model.

6

9

10

3. Two parental populations (1 and 2) with constant effective populations sizes N1 and N2 have diverged at time td from an ancestral population of size NA. At time ta, there has been an admixture event between the two populations giving birth to an admixed population (3) with effective size N3 and with an admixture rate ra relative to population 1.

4. The next scenario is slightly more complicated. It includes four population samples and two admixture events. For simplicity sake, all populations are assumed to have identical effective sizes (Ne).

Note that although there are only four samples, the scenario includes a fifth unsampled population.
 This unsampled population which diverged from population 1 at time t3 was a parent in the admixture event occurring at time t2. Note also that the first line must include the effective sizes of the *five* populations.

- 15
- 5. The following three scenarii correspond to a classic invasion history from an ancestral population (population 1). In scenario 1, population 3 is derived from population 2, itself derived from population 1. In scenario 2, population 2 derived from population 3, itself derived from population 1.
 In scenario 3, both populations 2 and 3 derived independently from population 1. The same trio of scenarii will be taken later in a fully described example. Note that when a new population is created from its ancestral population, there is an initial size reduction (noted here N2b for population 2 and N3b for population 3) since the invasive population generally starts with a few immigrants.
- 23 Scenario 1

2

3

4

5

Scenario 2

N1 N2 N3 O sample 1 O sample 2 O sample 3 t1-db VarNe 2 N2b t1 merge 3 2 t2-db VarNe 3 N3b t2 merge 1 3

- Scenario 3
 - N1 N2 N3 O sample 1 O sample 2 O sample 3 t1-db VarNe 2 N2b t1 merge 1 2 t2-db VarNe 3 N3b t2 merge 1 3

$\mathbf{2.3}$ Mutation model parameterization (microsatellite and DNA sequence loci) 1

The program can analyse microsatellite data and DNA sequence data altogether as well as separately. 2 In the current version, there are still two restrictions. First, all loci in an analysis must be genetically independent. Second, for DNA sequence loci, intralocus recombination is not considered.

5

Loci are grouped by the user according to its needs (this an improvement of the current version which 6 imposed all loci of a given category to follow the same mutation model). A different mutation model can be defined for each group. For instance, one group can include all microsatellites with motifs that are 2 8 bp long and another group those with a 4 bp long motif. Also, with DNA sequence loci, nuclear loci can 9 be grouped together and a mitochondrial locus form a separate group. 10

- 11 12

The parameterization of the two categories of markers is now described below.

2.3.1Microsatellite loci 13

Although a variety of mutation models have been proposed for microsatellite loci (Whittaker et al., 14 2003), it is usually sufficient to consider only the simplest models (Cornuet et al., 2006). This has the 15 non-negligible advantage of reducing the number of parameters, which can be a real issue when complex 16 scenarios are considered. This is why we chose the Generalized Stepwise Mutation model (Estoup et al., 17 2002). Under this model, a mutation increases or decreases the length of the microsatellite by a number 18 of repeated motifs following a geometric distribution. This model necessitates only two parameters : 19 the mutation rate (μ) and the parameter of the geometric distribution (P). The same mutation model 20 is imposed to all loci of a given group. However, each locus has its own parameters (μ_i and P_i) and, 21 following a hierarchical scheme, each locus parameter is drawn from a gamma distribution with mean 22 equal to the mean parameter value. Note also that : 23

1. individual loci parameters (μ_i and P_i) are considered as nuisance parameters and hence are never 24 recorded. Only mean parameters are recorded. 25

- 2. The variance or shape parameter of the gamma distributions are set by the user and are NOT 26 considered as parameters. 27
- 3. The SMM or Stepwise Mutation Model is a special case of the GSM in which the number of repeats 28 involved in a mutation is always one. Such a model can be easily achieved by setting the maximum 29 value of mean P (\bar{P}) to 0. In this case, all loci have their P_i set equal to 0 whatever the shape of 30 the gamma distribution. 31

4. All loci can be given the same value of a parameter by setting the shape of the corresponding 32 gamma distribution to 0 (this is NOT a limiting case of the gamma, but only a way of telling the 33 program). 34

Eventually, to give more flexibility to the mutation model, the program offers the possibility to consider 35 mutations that insert or delete a single nucleotide to the microsatellite sequence. In the previous version, 36 this option was considered as marginal, and was not treated in the same way as the motif size stepwise 37 mutational process, i.e. there was no associated parameter that could be adjusted to the data. This has 38 been changed in this version : it is now possible to use a mean parameter (named $\mu_{(SNI)}$) with a prior 39 to be defined and individual loci having either values identical to the mean parameter or drawn from a 40 Gamma distribution. 41

DNA sequence loci 2.3.242

Note first that this version of the program does not consider insertion-deletion mutations, mainly because 43 there does not seem to be much consensus on this topic. Concerning substitutions, only the simplest 44 models are considered. We chose the Jukes-Cantor (1969) one parameter model, the Kimura (1980) two 45 parameter model, the Hasegawa-Kishino-Yano (1985) and the Tamura-Nei (1993) models. The last two 46 models include the ratios of each nucleotide as parameters. However, in order to reduce the number 47 of parameters, these ratios have been fixed to the values calculated from the observed data set for each 48 DNA sequence locus. Consequently, this leaves two and three parameters for the Hasegawa-Kishino-Yano 49 (HKY) and Tamura-Nei (TN), respectively. Also, two adjustments are possible : one can fix the fraction 50 of constant sites (those that cannot mutate) on the one hand and the shape of the Gamma distribution 51

¹ of mutations among sites on the other hand.

² As for microsatellites, all sequence loci of the same group are given the same mutation model with

³ mean parameter(s) drawn from priors and each locus has its own parameter(s) drawn from a Gamma

⁴ distribution (same hierarchical scheme). Notes 1, 2 and 4 of previous subsection (2.3.1) apply also for

₅ sequence loci.

29

30

31

32

33

34

35

36

37

38

39

⁶ 2.4 SNPs do not require mutation model parameterization

SNPs have two characteristics that allow to get rid of mutation models : they are polymorphic and they 7 present only two allelic (ancestral and derived) states. In order to be sure that all analyzed SNP loci have 8 the two characteristics, non polymorphic loci are disgarded right from the beginning of analyses. Note 9 that a warning message will appear if the observed dataset include monomorphic loci, the latter being 10 automatically removed from further analyses by the program. Consequently, no matter how it occurred, 11 we can assume that there occured one and only one mutation in the coalescence tree of sampled genes. 12 We will see below that this largely simplifies (and speeds up) SNP data simulation as one can use in this 13 case the efficient algorithm of Hudson (2002) (Cornuet et al. 2014). Also, this advantageously reduces 14 the dimension of the parameter space (as mutation parameters are not needed in this case). There is 15 however a potential drawback which is the absence of any calibration generally brought by priors on 16 mutation parameters. Consequently, (time/effective size) ratios rather than original time parameters will 17 be informative. 18 It is worth stressing that, using the Hudson's simulation algorithm for SNP markers is equivalent to 19 appling a default MAF (minimum allele frequency) criterion on the simulated dataset. As a matter of 20 fact, each locus in both the observed and simulated datasets will be characterized by the presence of at 21 least a single copy of a variant over all genes sampled from all studied populations (i.e. pooling all genes 22 genotyped at the locus). In DIYABC v2.1.0, it is possible to impose a different MAF criterion for each 23 locus on the observed and simulated datasets. This MAF is computed pooling all genes genotyped over 24 all studied population samples. For instance, the specification of a MAF equal to 5% will automatically 25 select a subset of m loci characterized by a minimum allele frequency > 5% among the l locus of the 26 observed dataset. In agreement with this, only m locus with a MAF>5% will be retained in a simulated 27 dataset (simulated loci with a $MAF \leq 5\%$ will be discarded). In practice, the instruction for a given 28

MAF has to be indicated directly in the headline of the observed dataset. For instance, if one wants

to consider only loci with a MAF equal to 5% one will write $\langle MAF=0.05 \rangle$ in the headline. Writing

<MAF=hudson> (or omitting to write any instruction with respect to the MAF) will bring the program

to use the standard Hudson's algorithm without further selection as done so far in the previous version

of DIYABC. The selection with DIYABC v2.1.0 of a subset of loci fitting a given MAF allows: (i) to

remove the loci with very low level of polymorphism from the dataset and hence increase the mean level

of genetic variation of both the observed and simulated datasets, without producing any bias in the

analyses; and (ii) to reduce the proportion of loci for which the observed variation may corresponds to

sequencing errors. In practice MAF values $\leq 10\%$ are considered. To check for the consistency/robustness

of the ABC results obtained, it may be useful to treat a SNP dataset considering different MAFs (for

instance MAF=hudson, MAF=1% and MAF=5%).

40 2.5 Prior distributions

The Bayesian aspect of the ABC approach implies that parameter estimations use prior knowledge about
these parameters, prior knowledge given by prior distributions of parameters. The program offers a choice
among usual probability distributions, i.e. Uniform, Log-Uniform, Normal or Log-Normal for historical
parameters and Uniform, Log-Uniform or Gamma for mutation parameters. Extremum values and other
parameters (e. g. mean and standard deviation) must be filled in by the user.

In addition, one can impose some simple conditions on historical parameters. For instance, there can 46 be two times parameters with overlapping prior distributions. However, we want that the first one, say 47 t1, to always be larger than the second one, say t2. For that, we just need to set t1 > t2 in the 48 corresponding edit-windows. Such a condition needs to be between two parameters (not a parameter and 49 a number, though this can be set up by giving a minimum and a maximum to the prior distribution) and 50 more precisely between two parameters of the same category (i.e. two effective sizes, two times or two 51 admixture rates). The limit to the number of conditions is imposed by the logics, not by the program. 52 The only binary relationships accepted here are >, <, >= and <=. 53

¹ 2.6 Algorithms for data simulation : main features

Data simulation is based on the Wright-Fisher model. It consists in generating the genealogy of all
 sampled genes until their most recent common ancestor using coalescence theory.

⁴ This begins by randomly drawing a complete set of parameters from their own prior distributions and

⁵ that satisfy all imposed conditions. Then, once events have been ordered by increasing times, a sequence

⁶ of *actions* is constructed. If there are more than one locus, the same sequence of actions is used for all

⁷ successive loci. Possible *actions* fall into four categories :

adding a sample to a population : Add as many gong lineages to the

⁹ Add as many gene lineages to the population as there are genes in the sample.

¹⁰ merge two populations :

¹¹ Move the lineages of the second population into the first population.

¹² split between two populations :

Distribute the lineages of the admixed population among the two parental populations according to the admixture rate.

¹⁵ coalesce and mutate lineages within a population :

There are two possibilities here, depending on whether the population is *terminal* or not. We call *terminal* the population including the most recent common ancestor of the whole genealogy. In a terminal population, coalescences and mutations stop when the MRCA is reached whereas in a non terminal population, coalescence and mutations stop when the upper (most ancient) limit is reached. In the latter case, coalescences can stop before the upper limit is reached because there remains a single lineage, but this single remaining lineage can still mutate.

- Two different algorithms are implemented : a generation by generation simulation or a continuous time simulation. The choice, automatically performed by the program, is based on an empirical criterion which ensures that the (approximate³) continuous time algorithm is chosen whenever it is faster than the (exact³) generation by generation while keeping the relative error on the coalescence rate below 5% (see Cornuet *et al.* (2008) for a description of this criterion).
- In any case, a coalescent tree is generated over all sampled genes.

Then the simulation process diverges depending on the type of markers : for microsatellite or DNA sequence loci, mutations are distributed over the branches according to a Poisson process whereas for SNP loci, one mutation is applied to a single branch of the coalescent tree, this branch being drawn at random with probability proportional to its length.

Eventually, starting from an ancestral allelic state (established as explained below), all allelic states 32 of the genealogy are deduced forward in time according to the mutation process. For microsatellite 33 loci, the ancestral allelic state is taken at random in the stationary distribution of the mutation 34 model (not considering potential single nucleotide indel mutations). For DNA sequence loci, the 35 procedure is slightly more complicated. First, the total number of mutations over the entire tree 36 is evaluated. Then according to the proportion of constant sites and the gamma distribution of 37 individual site mutation rates, the number and position of mutated sites are generated. Finally, 38 these mutated sites are given 'A', 'T', 'G' or 'C' states according to the selected mutation model. 39 For SNP loci, the ancestral allelic state is arbitrarily set to 0 and it becomes equal to 1 after le the 40 mutation. 41

Each category of loci has its own coalescence rate deduced from male and female effective population sizes. In order to combine different categories (e.g. autosomal and mitochondrial), we have to take into account the relationships among the corresponding effective population sizes. This can be achieved by linking the different effective population sizes to the effective number of males (N_M) and females (N_F) through the sum $N_T = N_F + N_M$ and the ratio $r = N_M/(N_F + N_M)$. We use the following formulae for the probability of coalescence of two lineages within this population :

48 autosomal diploid loci : $p = \frac{1}{8r(1-r)N_T}$

- ⁴⁹ autosomal haploid loci : $p = \frac{1}{4r(1-r)N_T}$
- ⁵⁰ X-linked loci / haplo-diploid loci : $p = \frac{1+r}{9r(1-r)N_T}$
- ⁵¹ **Y-linked loci** : $p = \frac{1}{rN_T}$

 $^{^{3}}$ The terms *approximate* and *exact* are relative to the basic assumptions of the Wright-Fisher model, not to the biological reality of the process.

2

л

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

37

2.7

Mitochondrial loci : $p = \frac{1}{(1-r)N_T}$ Users have to provide a (total) effective size N_T (on which inferences will be made) and a sex-ratio r. If no sex ratio is provided, the default value of r is taken as 0.5. Summary statistics For each category (microsatellite, DNA sequences or SNP) of loci, the program proposes a series of summary statistics among those used by population geneticists. These summary statistics are mean values or variances over loci of the same group and characterize a single, a pair or a trio of population samples. These are : 2.7.1 for microsatellite loci Single sample statistics : 1. mean number of alleles across loci 2. mean gene diversity across loci (Nei, 1987) 3. mean allele size variance across loci 4. mean M index across loci (Garza and Williamson, 2001; Excoffier et al., 2005) Two sample statistics : 1. mean number of alleles across loci (two samples) 2. mean gene diversity across loci (two samples) 3. mean allele size variance across loci (two samples) 4. F_{ST} between two samples (Weir and Cockerham, 1984) 5. mean index of classification (two samples) (Rannala and Moutain, 1997; Pascual et al., 2007) 6. shared allele distance between two samples (Chakraborty and Jin, 1993) 7. $(\delta \mu)^2$ distance between two samples (Golstein *et al.*, 1995) Three sample statistics : 1. Maximum likelihood coefficient of admixture (Choisy et al., 2004) 2.7.2for DNA sequence loci Single sample statistics : 1. number of distinct haplotypes 2. number of segregating sites 3. mean pairwise difference 4. variance of the number of pairwise differences 5. Tajima's D statistics (Tajima, 1989)

- 6. Number of private segregating sites (=number of segregating sites if there is only one sample) 32
- 7. Mean of the numbers of the rarest nucleotide at segregating sites⁴ 33
- 8. Variance of the numbers of the rarest nucleotide at segregating sites 34
- Two sample statistics : 35
- 1. number of distinct haplotypes in the pooled sample 36
 - 2. number of segregating sites in the pooled sample

⁴This statistics can provide information in case of recent demographic variation : a recent expansion increases the number of singletons (nucleotides occuring just once at a segregating site) resulting in a low value of this statistics, whereas a recent decline will produce an opposite result.

1	3. mean of within sample pairwise differences
2	4. mean of between sample pairwise differences
3	5. F_{ST} between two samples (Hudson <i>et al.</i> , 1992)
4	Three sample statistics :
5	1. Maximum likelihood coefficient of admixture (adapted from Choisy et al., 2004)
6	2.7.3 for SNP loci
7	Single sample statistics :
8	1. proportion of loci with null gene diverty (= proportion of monomorphic loci)
9	2. mean gene diversity across polymorphic loci (Nei, 1987)
10	3. variance of gene diversity across polymorphic loci
11	4. mean gene diversity across all loci
12	Two sample statistics :
	1 properties of losi with well E distance between the two complex (Wein and Cockenham
13 14	1. proportion of loci with null F_{ST} distance between the two samples (Weir and Cockerham, 1984)
14	1984)
14 15	1984) 2. mean across loci of non null F_{ST} distances between the two samples
14 15 16	1984) 2. mean across loci of non null F_{ST} distances between the two samples 3. variance across loci of non null F_{ST} distances between the two samples
14 15 16 17	1984) 2. mean across loci of non null F_{ST} distances between the two samples 3. variance across loci of non null F_{ST} distances between the two samples 4. mean across loci of F_{ST} distances between the two samples
14 15 16 17 18	 1984) mean across loci of non null F_{ST} distances between the two samples variance across loci of non null F_{ST} distances between the two samples mean across loci of F_{ST} distances between the two samples proportion of loci with null Nei's distance between the two samples (Nei, 1972)
14 15 16 17 18 19	 1984) mean across loci of non null F_{ST} distances between the two samples variance across loci of non null F_{ST} distances between the two samples mean across loci of F_{ST} distances between the two samples proportion of loci with null Nei's distance between the two samples (Nei, 1972) mean across loci of non null Nei's distances between the two samples
14 15 16 17 18 19 20	 1984) mean across loci of non null F_{ST} distances between the two samples variance across loci of non null F_{ST} distances between the two samples mean across loci of F_{ST} distances between the two samples proportion of loci with null Nei's distance between the two samples (Nei, 1972) mean across loci of non null Nei's distances between the two samples variance across loci of non null Nei's distances between the two samples
14 15 16 17 18 19 20 21	 1984) mean across loci of non null F_{ST} distances between the two samples variance across loci of non null F_{ST} distances between the two samples mean across loci of F_{ST} distances between the two samples proportion of loci with null Nei's distance between the two samples (Nei, 1972) mean across loci of non null Nei's distances between the two samples variance across loci of non null Nei's distances between the two samples mean across loci of Nei's distances between the two samples
14 15 16 17 18 19 20 21 22	1984) 2. mean across loci of non null F_{ST} distances between the two samples 3. variance across loci of non null F_{ST} distances between the two samples 4. mean across loci of F_{ST} distances between the two samples 5. proportion of loci with null Nei's distance between the two samples (Nei, 1972) 6. mean across loci of non null Nei's distances between the two samples 7. variance across loci of non null Nei's distances between the two samples 8. mean across loci of Nei's distances between the two samples 7. Three sample statistics :
14 15 16 17 18 19 20 21 22 22 23	1984) 2. mean across loci of non null F_{ST} distances between the two samples 3. variance across loci of non null F_{ST} distances between the two samples 4. mean across loci of F_{ST} distances between the two samples 5. proportion of loci with null Nei's distance between the two samples (Nei, 1972) 6. mean across loci of non null Nei's distances between the two samples 7. variance across loci of non null Nei's distances between the two samples 8. mean across loci of Nei's distances between the two samples 7. Three sample statistics : 1. proportion of loci with null admixture estimate

27 2.8 Pre-evaluation of scenarios and prior distributions

This option is proposed to users since version 1.0. The purpose is to check that at least one combination 28 of scenarios and priors can produce simulated data sets that are close enough to the observed data set. 29 This is performed through two kinds of analyses. In the first one, a principal component analysis is 30 performed in the space of summary statistics on at most 100,000 simulated data set and the observed 31 data is added on each plane of the analysis in order to evaluate how the latter is surrounded by simulated 32 data sets. In addition to this global approach, there is a second one in which each summary statistic of 33 the observed data set is ranked against those of the simulated data set. This second analysis helps finding 34 which aspects of the model (including prior) have been mistated. For instance, a grossly overestimated 35 genetic distance (in simulated data sets compared to the observed one) may suggest a mispecification of 36 the prior distribution of the time of divergence of the two involved populations or of the mean mutation 37 rate of the markers. Using this new option before running a full ABC treatment is a convenient way to 38 reveal mispecification of models (scenarios) and/or prior distributions of parameters (see Cornuet et al., 39 2010, for an illustration) 40

¹ 2.9 Estimation of posterior distributions of parameters

² Several steps are necessary to get posterior distributions of parameters. First, the normalized Euclidian
 ³ distance between the observed data set and each simulated data set is computed as the sum of squared

differences of summary statistics weighted by the inverse of their variance in the entire set of simulated $_{5}$ data. For the *i*-th data set, the distance is :

$$d_{i} = \sqrt{\sum_{j=1}^{nstat} \frac{(s_{ij} - s_{j}^{obs})^{2}}{V_{j}}}$$
(1)

in which s_{ij} is the *j*-th summary statistics from the *i*-th data set, s_j^{obs} is the *j*-th summary statistics 6 from the observed data set and V_i is the variance of the the j-th summary statistics across all simulated 7 data sets. Only the closest data sets are selected for further treatments. The latter includes a weighted 8 local linear regression step aimed at improving the posterior distributions of the parameters (Beaumont 9 et al., 2002). Basically, a multiple linear regression is performed in which summary statistics are the 10 independent variables and parameters the dependent variables. But this regression is also *local* in the 11 sense that more weight in the regression is given to data sets that are closest to the observed data set. 12 This is performed by using a kernel function (the Epanechnikov kernel following Beaumont et al. (2002) 13 14 :

$$\mathbf{K}_{\delta}(d) = \begin{cases} (1.5/\delta)(1 - (d/\delta)^2), & t \le \delta\\ 0, & t > \delta \end{cases}$$
(2)

¹⁵ Eventually, parameters are adjusted through this process as :

$$\phi_{ik}^* = \phi_{ik} - (\mathbf{s}_i - \mathbf{s}^{obs})\boldsymbol{\beta}_k \tag{3}$$

¹⁶ in which ϕ_{ik} is the k-th parameter of the *i*-th selected data set, ϕ_{ik}^* is the adjusted corresponding pa-¹⁷ rameter, \mathbf{s}_i is the row vector of summary statistics of the *i*-th selected data set, \mathbf{s}^{obs} is the row vector of ¹⁸ summary statistics of the observed data set and $\boldsymbol{\beta}_k$ is the transposed k-th row vector of the regression ¹⁹ coefficient matrix.

The adjusted ϕ_{ik}^* of the selected data sets are an approximate sample of the posterior distribution of parameters (Beaumont *et al.*, 2002).

²² 2.10 Model checking

Checking the model is crucial to statistical analysis (p161 in Gelman et al., 1995). Model checking (i.e. 23 the assessment of the $i_i e_i e_2$ goodness-of-fit $i_i e_i e_2$ of a model $i_i e_i e_2$ parameter posterior combina-24 tion) is a facet of ABC analysis that has been so far neglected (but see Ingvarsson, 2008). Following 25 Gelman et al. (1995; pp 159-163), we already implemented this option in DIYABCv1.0, to measure 26 the discrepancy between a model i_{i} cei_{i} cei_{i} parameter posterior combination and a i_{i} cei_{i} cei_{i} cei_{i} cei_{i} cei_{i} 27 data set by considering various sets of test quantities. These test quantities can be chosen among the 28 large set of ABC summary statistics proposed in the program. This option is based on the same kinds 29 of analysis as section 2.7. The main difference is the set of simulated data. Whereas in section 2.7, prior 30 distributions of parameters have been used to simulate data sets, here we use posterior distributions of 31 the same parameters, hence simulating data from the *posterior predictive distribution*. 32

The first analysis is a principal component analysis in the space of summary statistics using data sets simulated with the **prior** distributions of parameters (exactly as in section 2.7) and the observed data

as well as data sets from the posterior predictive distribution are represented on each plane of

³⁶ the PCA. If the model fits well the data, one should see on each PCA plane a wide cloud of data sets

³⁷ simulated from the prior, with the observed data set in the middle of a small cluster of datasets from the

³⁸ posterior predictive distribution.

- ³⁹ In the second analysis, each summary statistics of the observed data set is ranked against the distribution
- 40 of the corresponding summary statistics from the posterior predictive distribution. Summary statistics
- ⁴¹ play here the role of *test statistics* (p169 in Gelman *et al.*, 1995).
- 42 Since summary statistics are generally not sufficient, it is advised to use different sets of summary statis-
- 43 tics to compute the posterior distribution of parameters on one hand and to check the model on the other
- ⁴⁴ hand (see Cornuet *et al.*, 2010). This has been implemented in DIYABC.

16

21

¹ 2.11 Measures of performances

As stressed in previous studies (e.g. Excoffier *et al.*, 2005), the ABC appproach provides an efficient way of assessing its own performances for estimating posterior distributions of parameters. The reference table, the building of which represents generally 95 to 99% of the computing time, can be reused to analyse pseudo-observed (test) data sets obtained through simulation with known values of parameters.

analyse pseudo-observed (test) data sets obtained through simulation with known values of parameters.
It is then rather quick and easy to evaluate the performance of the method for parameter estimation by

⁷ computing statistics such as estimation biases or mean square errors.

- These measures of performance have been fully integrated into DIYABC. The performance measures
 computed by DIYABC are :
- the average relative bias : the difference between the point estimate (e) and the true value (v) divided by the true value, $\frac{1}{n} \sum_{i=1}^{n} \frac{e_i - v_i}{v_i}$, averaged over the *n* test data sets,

the square Root of the Relative Mean Square Error (RRMSE) : the square root of the average square difference between the point estimate and the true value, divided by the true value, $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\frac{e_{i}-v_{i}}{v_{i}})^{2}}$

- the square Root of the Relative Mean Integrated Square Error (RRMISE) : the square root of the average (over test data sets) of the integrated square error (measured on each test data set) divided by the true value, $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\frac{\sum_{j=1}^{m_{i}}(x_{ij}-v_{i})^{2}}{m_{i}v_{i}^{2}})}$, x_{ij} and m_{i} being the sampled values and the sample size of the posterior distribution in the *i*-th test data set, respectively.
- the Relative Mean Absolute Deviation (RMAD) : the average (over test data sets) of the mean absolute deviation (measured on each data set), divided by the true value, $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{m_i} |x_{ij} - v_i|}{m_i |v_i|} \right)$
- the factor 2 :the proportion of test data sets for which the point estimate is at least half and at most
 twice the true value.
- the Relative Median Bias (RMB) : the 50% quantile of the bias (measured on each test data set)
 divided by the true value. The bias is computed respectively for each point estimate

the Relative Median Absolute Deviation (RMedAD) : the 50% quantile (over test data sets) of the median (over each data set) of the absolute difference between each value of the posterior distribution sample and the true value divided by the true value.

the Relative Median of the Absolute Error (RMAE) : the 50% quantile (over test data sets) of the absolute value of the difference between the point estimate (in each data set) and the true value divided by the true value.

³⁵ DIYABC considers the following three point estimates : mean, median and mode of the ϕ_{ik}^* (sample of ³⁶ the posterior distribution of each parameter), as defined in subsection 1.7.

 $_{37}$ Concerning the true value (v) appearing in the above formulae, DIYABC offers three possibilities :

1. All values v are fixed by the user. If any one of these values is outside the limits given to the prior for the corresponding parameter, a warning message is issued but the analysis can proceed if needed.

- All values v are drawn from prior distributions. These distributions can also be different from those
 of priors. They may even not be overlapping (no warning message is issued whatever the user's choice).
- All values v are drawn from posterior distributions (in order to obtain accuracy measures conditionally to the observed dataset).

If you want to fix some parameter values and draw the other from distributions, choose the second option
 and give the same desired values as minimum and maximum for those fixed parameter values.

In order to better assess the information brought by genetic data, DIYABC provides a double estimate of all these bias/precision statistics. As expected, the first one is based on genetic data given in the data file. The second one is computed as if there was no genetic information, *i.e.* estimates are based only on parameter priors. Technically, a sample of parameter values is drawn at random from the reference table. This sample of the same size of the sample of posterior values is used in place of the latter in all computations.

7 2.12 Comparison of scenarios

The ABC approach can also be used to compare possible scenarios for the same data file through the
 computation of the posterior probabilities of each scenario and this option is naturally implemented in
 DIYABC.

11

¹² 2.12.1 Reference table

First, the reference table can include as many scenarios as desired. By default, the prior probability of each scenario is uniform, that is each scenario will have approximately the same number of simulated data sets. But, if for any reason, one wants a different prior probability for each scenario, there is the possibility to do so.

17

Scenarios are drawn according to their own prior probability and then only parameters that are defined
 for the drawn scenario are generated from their respective prior distribution. Scenarios may or may not
 share parameters.

²¹ When conditions apply to some parameters (see subsection 2.4), the program provides the possibility of

²² choosing between two options :

1. parameter sets are drawn in their respective prior distributions until all conditions are fulfilled.

 a single parameter set is drawn and only if all condition are fulfilled, the simulation is performed and the data set is recorded in the reference table.

When there is only one scenario, both options are equivalent, although in option 2, there might be less simulated data sets that are recorded than one asked. When there is more than one scenario, the second option can be viewed as a way to set prior probabilities on scenario that result from imposed conditions on parameters (see Miller *et al.* (2005) for an example).

30 2.12.2 Posterior probability of scenarios

³¹ The program DIYABC provides two estimates of the posterior probability of each scenario :

a emphdirect estimate : This is simply the number of times that a given scenario is found in the first n_{δ} simulated data sets once the latter, produced under several scenarios, have been sorted by ascending distances to the observed data set (*i.e.* the "closest" simulated data sets).

a logistic regression estimate : Following M.A. Beaumont's suggestion (Fagundes *et al.*, 2007; Beaumont, 2008), a polychotomic weighted logistic regression is performed on the first n_{δ} data sets with the proportion of the scenario as the dependent variable and the differences between observed and simulated data set summary statistics as the independent variables. The intercept of the regression (corresponding to an identity between simulated and observed summary statistics) is taken as the point estimate. In addition, 95% confidence intervals are computed (Cornuet *et al.*, 2008).

Since both estimates are dependent upon the chosen threshold (δ), the program provides a range of 100 42 estimates for the direct approach (for each one 100-th of n_{δ} between 0 and n_{δ}) and up to 10 estimates for 43 the logistic regression estimates (e.g. one estimate for $kn_{\delta}/10$ with $k \in [1, 2, ..., 10]$ when the number of 44 analyses is set to 10). These estimates are represented in two graphs, one for each kind of estimate. These 45 two graphs can be printed and/or saved (in svg, jpg, png or pdf format). Values can also be output as a 46 text file. In DIYABCv2.0, a new possibility is offered to the user that may be useful when dealing with 47 many summary statistics and many scenarios. In this particular case, the logistic regression has to deal 48 with large matrices and the amount of needed memory on one hand and the computation time on the 49

¹ other hand can become problematically large. An approximate solution is to replace summary statistics

² by the components of a linear discriminant analysis which reduces the number of independent variables

to the smallest of number of summary statistics and scenarios. Although the result is only approximate,
it can be a useful guide in some specific cases. The gain in time can be large. For instance, the time can

⁵ be reduced by a 100X factor (Estoup *et al.*, 2012).

6

7 2.12.3 Confidence in scenario choice

The program DIYABC offers a last option that allows one to evaluate the confidence in a scenario choice.
To do so, we simulate test datasets (or pods), apply the same procedure for estimating their respective posterior probabilities and measure the proportion of times the right scenario has the highest posterior probability. More specifically DIYABC proposes three main options :

(i) Compute confidence in scenario choice drawing scenario-parameter combinations into posterior distributions (cf. Posterior based error). Computing error rate conditionally to the observed dataset (i.e. focusing around the observed dataset by using the posterior distributions) provide a more relevant estimation of our ability to choose the true scenario in the vicinity of the observed dataset (which is the location of prime interest in the vast data space defined by the prior distributions) than blindly computing accuracy indicator over the whole prior space.

(ii) Compute confidence in scenario choice drawing scenario-parameter combinations into prior distributions (cf. Prior based error). Prior based error computation provides an estimate of a global error level over the whole (and usually huge) prior data space. Such computation can be useful for comparisons with the above posterior error rate, to focus investigation on a particular scenario and to select the best classifier and/or set of summary statistics (Pudlo et al. 2015). Two sub-options are proposed for the computation of prior based errors:

- Global (prior error rate) in which pods are drawn from a random sample of scenario ID and parameter
 values in the prior distributions;

- Scenario specific (prior error rate) in which pods are drawn from parameter prior distributions under a GIVEN scenario. This corresponds to the confidence in scenario choice option that was initially available in the previous version of the program (DIYABC v2.0). In this sub-option parameter values can also be fixed to given values.

¹ 3. The Graphic User Interface

² When launching the GUI, the home screen appears like this :

You can already notice that DIYABC works with projects. This notion is new to version 2 of DIYABC.
 It is explained in subsection 3.1.

7 3.1 What is a DIYABC Project ?

A DIYABC project is a unit of work materialized by a specific and unique directory. A project is defined
by at least one observed data set and one reference table header file. These files are located in the *Project directory* which name includes an identifier, the date of creation and a number (between 1 and 100).

- The header file, always named header.txt, contains all information necessary to compute a reference 12 table associated with the data : i.e. the scenarios, the scenario parameter priors, the characteristics of 13 loci, the loci parameter priors and the summary statistics to compute. As soon as the first records of 14 the reference table have been saved in the reference table file, always named reftable.bin and also 15 included in the project directory, the project is "locked". This means that the header file can not be 16 changed anymore. If one needs to change a scenario or a parameter prior, or a summary statistics, a new 17 project needs to be defined. This is to guarantee that all subsequent actions performed on the project 18 are in coherence with the current data and header files. It is of course strongly advised NOT to move 19 files among projects. Incidentally, the header.txt file is only built when the project has been saved, the 20 information progressively input by the user being saved in a series of temporary files. 21
- 22

11

Once a sufficiently large reference table has been simulated, analyses can be performed. Their different output files are copied to the *analysis* directory included in the project directory, and containing as many directories as analyses performed. Hence, it is now much easier to know with certainty the conditions of each analysis.

²⁷ 3.2 Options of the home screen

²⁸ The home screen above has two menus and several buttons.

 $_{\rm 29}$ $\,$ Let's start with the menus. Below are shown all submenus :

8

10

11 12

- The File menu has seven options, namely New project, Open project, Open recent projects, Save all projects, Settings, Simulate data set(s) and Quit. All are self explanatory.
- ⁴ The Help menu has two options : About DIYABC which opens up a small window providing the names
- and address of the authors and Show logfile which gives access to a logfile viewer in which are recorded
- ⁶ all actions and messages about the execution of the GUI.
- $_{7}$ $\,$ Just below the menu are five shortcuts to main File menu options.

On the right, the field What's this ? is an another way to get help on a specific GUI object :

ile <u>H</u> elp		
<mark>≌New MSS≌New SNP ⊫Open</mark> ⊟Save ∰Sa	ave all	(🕐 What's
	Click on this button and then on	another object to get the documentation
	DIYAB	
Eventually, below the logo, there	are three buttons which ϵ	are duplicate shortcuts :
		are duplicate shortcuts :
	are three buttons which a	are duplicate shortcuts :
	are three buttons which ϵ	are duplicate shortcuts :

17 18

¹⁹ 3.3 Defining a new project

Defining a new project requires different steps which are not the same whether the data are SNPs or microsatellites/DNA sequences (MSS). Let start with an MSS project : click on one of the following :

• File menu > New project > Microsatellites and/or sequences

• the menu shortcut New MSS

- the bottom left button New Microsat/Sequence project
- $_{\rm 2}~$ or press simultaneously the <code>Control</code> and <code>M</code> keys.
- ³ A new window appears in which the user can choose a location and a name for the new project as shown
- 4 below :

Sf

5

	location of the new project	
Look in:	home/diyabc/demo	1
💻 Com	data1.mss	
Cornue		
(
Project name		Create projec
Files of type:	All Files (*)	Cancel
ries of type:	All Files (*)	
	http://www.montpellier.inra.fr/CBGP/diya	

- ⁷ Let's enter **demo1** as the project name and click on the **Create project** button.
- ⁸ The following screen appears :

0
9

6

	development version demo1 <u>G</u> o to opened			- (
	🖹 New SNP 📄 Open 🔓			Ø What's th
Refere	ence table 🦳 <mark>6</mark> Analyses			
Pro	oject name :	demo1	Data file : Browse	
	Directory : //home	diyabc/demo/demo1_2012_5_31	-1 Data file info :	

10 11

The **demo1** project and all its future files will be located in the directory **demo1_2012_5_31-1**.

¹² 3.3.1 Step 1 : choosing the data file

- ¹⁵ a Genepop format data file, here data1.mss.
- 16

IP C		Save Save all			0
•	Select o	latafile			
Lool	k in:	📄 /home/diyabc/demo	≑ ← → 🕆	📷 🗉 🔳	
	Com	demo1_2012_5_31-1			
	cornue	data1.mss			
aı					
•					
ire		data1.mss		Open	
File		ua(a1.11155			
Files	of type:	Microsat Sequence datafile (*.mss)	\$	Cancel	

- ² Clicking on the Open button leads to the following screen with the edit field filled with the name of the
- ³ data file and some characteristics of this data file appearing on the screen (number of loci, individuals ⁴ and samples).
- Below these fields are two panels indicating that we need to provide information about the Historical
 model (left panel) and about the Genetic data and associated Summary statistics (right panel). The red
 crosses on both panels will change to green checks once the corresponding information will be completed.

8 9

ew MSS New SNP Open Reference table Analyses				⊚What's		
Project name :	demo1	Data file : Iyat	oc/demo/demo1_2012_5	_31-1/data1.mss		
Directory : /hon	Directory : //home/diyabc/demo/demo1_2012_5_31-1		12 loci (12 micro 150 individuals in 3			
Histor	rical model	Genetic data	Genetic data and Summary statistics			
	Set		Set			
		12 microsatellite	loci 0 DNA seq	uence locus		
	Simulated data sets					
	Total required number of sin	nulated data sets				
	Number of already simulated data sets in the reference table					
	Run com	putations		Stop		

¹ 3.3.2 Inform the Historical model

² Click on the corresponding Set button. The following screen, familiar to users of previous versions,
 ³ appears:

.

/ demo1	EXIT	CLEAR	VALIDATE AND SAV	/E
	Scenario 1 remove		Check	and dra enario e prior
	parameters Uniform _og-uniform Nc	ormal Log-normal minimum	maximum mean st-devia	tion

5 6

> 7 8

Let's enter a simple scenario in scenario 1 edit window and click on the Define priors button. We get this :

	EXIT			CLEAR VALIDATE AND					ND SAVE	
	scenario 1	re	move						Add scena	rio
	N1 N2 N3 0 sample 1 0 sample 2 0 sample 3 t1 merge 2 3								Check and o scenario	
									Define pri	ors
So	cenario Othe		nario 1						Define pri	ors
	enario		1.0	Normal	Log-normal	minimum	maximum	mean	St-deviation	ors
F	O Othe	r	1.0	Normal	Log-normal	minimum	maximum [10000.0]	mean		ors
F	oarameters	Uniform	1.0 og-uniform						st-deviation	ors
F	Othe Darameters	Uniform	1.0 og-uniform	0	0	10.0	10000.0	0.0	st-deviation	ors

9

The parameter prior frame allows to choose the prior density of each parameter. A parameter is anything in the scenario that is not a keyword (here sample and merge), nor a numeric value. In our example scenario, parameters are hence : N1, N2, N3, t1 and t2. In our example, we need to set the priors on t1 and t2 such that t2> t1. We can do it either by using the set condition button or by playing with the minimum and maximum values of the two parameters. It is worth stressing that the omission of such conditional constraints on merge times (cf. a population needs to exists in the past to
allow coalescence events in it) is one the most frequent implementation error made by DIYABC users. If
forgotten a gene genealogy failure message pointing to the problematic scenario will appear when
launching simulations. Note that the occurrence of a too large number of time conditional constraints
within a scenario may substantially slow down simulations as a valid t parameter vector will be retain
and run only once all conditions are fullfiled.

⁸ If we click on the Check scenario button, the logic of the scenario is checked and if it is found OK, ⁹ and if the scenario is drawable, the drawing appears on a new frame :

The scenario can be saved by clicking on the \boxed{SAVE} button. The frame can be close by clicking on the \boxed{CLOSE} button.

14

11

10

Since the scenario has been checked, we can validate and save the historical model by clicking on the
 VALIDATE AND SAVE button (bottom screen of p 21). We then go back to the project screen in which
 the historical model has now received the green check sign.

*	Reference table 🏾 🌏 Analyses				
	Project name :	demo1	Data file :	iyabc/demo/d	emo1_2012_5_31-1/data1.mss
	Directory : /home/diyab	c/demo/demo1_2012_5_31-1	Data file info :	1 150 i	2 loci (12 microsat) ndividuals in 3 samples
	Historical	model	Genetic da	ta and S	ummary statistics
	V	Set		*	Set
	1 scenar 5 historical par		12 microsate	llite loci	0 DNA sequence locus
		Simulate	ed data sets		
		Total required number of simu	lated data sets		
	Number	r of already simulated data set	s in the reference table		0
		Run comp	utations		Stop

¹ 3.3.3 Inform the Genetic model

- ² Click on the corresponding Set button. We get the following screen :
- 3

	EXIT			CL	EAR	VALIDATE	AND SAVE
Lo	ci				Groups of loci	Auto group	Add group
	locus name	type	motif	range			
1	Locus M_A_1	м	2	40			
2	Locus M_A_2	м	2	40			
3	Locus M_A_3	м	2	40			
4	Locus M_A_4	м	2	40			
5	Locus M_A_5	м	2	40			
6	Locus M_A_6	м	2	40			
7	Locus M_A_7	м	2	40			
8	Locus M_A_8	м	2	40			
9	Locus M_A_9	м	2	40			
1	D Locus M_A_10	м	2	40			
1	Locus M_A_11	м	2	40			
1	2 Locus M A 12	м	2	40			

4

30

On the left part of the screen, there is the list of loci, with their type (M for microsatellites or S for 5 DNA sequences) and the motif size and allelic range for microsatellite loci only. Actually, the values for 6 motif size and allelic range are just default values and do not necessarily correspond to the actual data. The user who knows the real values for its data is required to set the correct values at this stage. If the 8 range is too short to include all values observed in the analysed dataset, a message appears in a box asking 9 to enlarge the corresponding allelic range. Note that the allelic range is measured in number of motifs, 10 so that a range of 40 for a motif length of 2 bp means that the difference between the smallest and the 11 longest alleles should not exceed 80 bp. It is worth stressing that the indicated allelic range (expressed 12 in number of continuous allelic states) corresponds to a potential range which is usually larger than the 13 range observed from the analyzed dataset (cf. all possible allelic states have usually not been sampled). 14 In practice it is difficult to assess the actual microsatellite constraints on the allelic range; to do that one 15 needs allelic data from several distantly related populations/sub-species as well as related species which 16 is rarely the case (see Pollock et al., 1998); (Estoup et al., 2002). We achieved a meta-analysis from 17 numerous primer notes documenting the microsatellite allelic ranges of many (i.e. >100) different species 18 (and related species). We used the corrective statistical treatment on such data proposed by (Pollock 19 et al., 1998). Our results pointed to a mean microsatellite allelic range of 40 continuous states (hence 20 the default allelic range value of 40 mentioned in the program). We also found, however, that range 21 values greatly varied among species and among loci within species (unpublished results). We therefore 22 recommend to use the following pragmatic behaviour when considering the allelic range of your analysed 23 microsatellite dataset: (i) if the difference in number of motif of your locus is <40 motifs in the analysed 24 dataset then leave the default allelic range value of 40. (ii) if the difference in number of motif of your 25 locus is >40 motifs in your dataset then take Max_allele_size – Min_allele_size)/motif size + say 10 ad-26 ditional motifs to re-define the allelic range of the locus in the corresponding DIYABC panel (e.g. (200 27 nu - 100 nu)/2 + 10 = 50 + 10 = 60 as allelic range). 28 We then need to define at least one group of loci by clicking on the Add group button. We get this : 29

	Reference table 🛛 🌏 Analyses						
	EXIT			CL	EAR	VALIDATE A	ND SAVE
Lo	ci				Groups of loci	Auto group	Add group
	locus name	type	motif	range	Group 1		
1	Locus M_A_1	м	2	40		D	
2	Locus M_A_2	м	2	40		Remove group	Set mutation
3	Locus M_A_3	м	2	40	>>		Model
4	Locus M_A_4	м	2	40			
5	Locus M_A_5	м	2	40	<<		Set Summary
6	Locus M A 6	м	2	40			Statistics
7	Locus M_A_7	м	2	40			
8		м	2	40			
9		M	2	40			
			2	40			
	0 Locus M_A_10	м	2	40			
	1 Locus M_A_11	м	2	40			
1	2 Locus M_A_12	м	2	40			

5

- ² Suppose we want all loci in the same group because we consider that they all have similar mutational
- $_3$ modalities. We select them like in any table, extending the selection with the Shift and Control keys
- (see below):

	EXIT			CL	EAR	VALIDATE A	ND SAVE
Lo	ci) (Groups of loci	Auto group	Add group
	locus name	type	motif	range	Groups of loci	Auto group	Add group
1		M	2	40	Group 1		
2	Locus M_A_2	м	2	40		Remove group	
3		м	2	40	>>		Set mutation Model
4	Locus M A 4	м	2	40			
5	Locus M_A_5	м	2	40	<<		Set Summary
6		м	2	40			Statistics
7	Locus M_A_7	м	2	40			
8	Locus M_A_8	м	2	40			
9	Locus M A 9	м	2	40			
1	0 Locus M A 10	м	2	40			
1	1 Locus M A 11	м	2	40			
1	2 Locus M A 12	м	2	40			

6 7

and then pressing the >> button :

Reference table 🛛 🌕 Analyse	S		
EXIT		CLEAR	VALIDATE AND SAVE
Loci	type motif range	<	Auto group Add group ellites Remove group tus M A 1 tus M A 2 tus M A 3 tus M A 5 tus M A 6 tus M A 6 tus M A 7 tus M A 8 tus M A 8 tus M A 2 tus M A 2 tus M A 4 tus M A 4 tus M A 5 tus M A 6 tus M A 6 tus M A 6 tus M A 7 tus M A 7 tus M A 8 tus M A 2 tus M A 6 tus M A 6 tus M A 6 tus M A 7 tus M A 7 tus M A 7 tus M A 8 tus M A 7 tus M A 8 tus M A 6 tus M A 7 tus M A 8 tus M A 8 tus M A 8 tus M A 8 tus M A 9 tus M A 6 tus M A 7 tus M A 8 tus M A 7 tus M A 8 tus M A 9 tus M A 7 tus M A 8 tus M A 9 tus M A 6 tus M A 7 tus M A 7 tus M A 7 tus M A 8 tus M A 7 tus M A 8 tus M A 9 tus M A 7 tus M A 8 tus M A 9 tus M A 7 tus M A 9 tus

Note that the Auto group button would have produced the same result of putting all the microsatel-lite loci in the same group.

We then need to define the mutation model and the summary statistics of the locus group. Clicking on the $\fbox{Set mutation model}$ button, the following screen appears :

Reference table Analyses EXIT CLEAR VALIDATE								
EXIT CLEAR VALIDATE							DATE	
Set mutation model of Group 1 (microsatellites)								
	Mean	Prior distribution		Minimum	Maximum	Mean	Shape	
	mutation rate	Unif O Log-u	🔾 Gamma	1.00E-004	1.00E-3	0.0005	2	
	Individuals locus	Prior distribution		Minimum	Maximum	Mean	Shape (1)	
	mutation rate	Gamma		1.00E-005	1.00E-002	Mean_u	2	
	Mean	Prior distribution		Minimum	Maximum (2)	Mean	Shape	
	coefficient P	Unif O Log-u	🔾 Gamma	1.00E-001	3.00E-001	0.22	2	
	Individuals locus	Prior distribution		Minimum	Maximum	Mean	Shape (1)	
	coefficient P	Gamma		1.00E-002	9.00E-001	Mean_P	2	
	Mean	Prior distribution		Minimum	Maximum (3)	Mean	Shape	
	SNI rate	○ Unif	🔘 Gamma	1.00E-008	1.00E-005	1.00E-007	2	
	Individuals	Prior distribution		Minimum	Maximum	Mean	Shape (1)	
	locus SNI rate	Gamma		1.00E-009	1.00E-004	Mean_u_SNI	2	
	(2) Set the minimum	0 if you want all individu and the maximum to 0 and the maximum to 0	if you want a S	Stepwise Mutation Mod	el (SMM)	tions		

Once the mutation model of Group 1 is defined, we click on the VALIDATE button to go back to the previous screen. Clicking on the Set Summary statistics button, we get the following screen :

EX	IT	CLEAR	VALIDATE		
9	Set summary	statistics of Group 1 (r	nicrosatellites)		
One Sample summary statistics					
Mean number of alleles Mean genic diversity Mean size variance Mean Garza-Williamson	all none all none all none	Imp 1 Samp 2 Samp 3 Imp 1 Imp 2 Samp 3 Imp 1 Imp 2 Imp 3 Imp 1 Imp 3 Imp 3 Imp 3 Imp 3 Imp 3 Imp 4 Imp 3 Imp 3 Imp 5 Imp 3 Imp 3 Imp 4 Imp 3 Imp 3 Imp 5 Imp 3 Imp 3 Imp 4 Imp 3 Imp 3 Imp 5 Imp 3 Imp 3 Imp 4 Imp 3 Imp 3 Imp 5 Imp 3 Imp 3 Imp 4 Imp 3 Imp 3 Imp 5 Imp 3 Imp 3 Imp 4			
Two Sample summary st	atistics				
Mean number of alleles Mean genic diversity Mean size variance Fst Classification index Shared allele distance (dµ) ² distance	Samp : all none all				
Admixture summary sta Admixed Parental population population 1	Parental				

We define summary statistics by checking the corresponding boxes :

4

<u>F</u> ile I	DIYABC development version (29/05/2012)	─ □ 😸 ❷What's this ?
*	Reference table 💽 Analyses	
demo1	EXIT CLEAR VALIDATE	
	Set summary statistics of Group 1 (microsatellites)	
	One Sample summary statistics Samp 1 Samp 2 Samp 3	
	Mean number of alleles all none Image: State of all state of all none Mean genic diversity all none Image: State of all none Mean size variance all none Image: State of all none Mean Garza-Williamson's M all none Image: State of all none	
	Two Sample summary statistics Samp 162 Samp 163 Mean number of alleles Mean genic diversity all none Mean size variance all none ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	
	Admixture summary statistics Admixed Parental Parental population population 1 population 2 1 Admixed Parental population population 2 Admixed Parental Admixed Pare	

Once finished, we click on the VALIDATE button to go back to the screen of p24. Now, we can validate also this screen which brings us back to the screen of p22. The latter looks now like this :

4SS New SNP 🖻 Open 📓 Save	₽Save all			Θ What
Project name :	demo1	Data file :	iyabc/demo/d	emo1_2012_5_31-1/data1.ms
Directory : /home/diyabc/	demo/demo1_2012_5_31-1	Data file info :		2 loci (12 microsat) ndividuals in 3 samples
Historical n	nodel	Genetic da	ta and S	ummary statistics
~	Set		<	Set
1 scenario 5 historical parar	neters	12 microsatel 1 locus gr		0 DNA sequence locus 21 summary statistics
	Simulate	d data sets		
	otal required number of simula of already simulated data sets			0
	Run compu	tations		Stop

At that moment, the project directory includes the following files : a copy of the data file, and four configuration files : conf.analysis, conf.gen.tmp, conf.hist.tmp, conf.tmp. Note that the project is not yet saved. To save the project, we need either to save it explicitly by using the File menu (see below)

5 or to start simulating data sets (next section). Saving the project results in saving the header.txt file

⁶ in the project directory.

7

⁸ 3.4 Building the reference table

 $_{9}$ $\,$ Keeping on the current screen, indicate the required number of data sets to simulate for the reference $_{10}$ $\,$ table :

11

Simulated data sets	
Total required number of simulated data sets 100000	
Run computations	Stop

12

Then click on the Run computations button. If things go well, you will soon see the progress both into the edit window "Number of simulated data sets in the reference table" and in the progress bar below. Also, you have an estimate of the remaining time (at the left of the Run computations button): 16

	Simulated data sets					
	Total required number of simulated data sets Number of already simulated data sets in the reference table	100000				
	18%					
from 0			to 10000			
	Running 2 min 46 s remaining		Sto			

When the computation is finished, the screen looks like this :

-	Reference table 🛛 🎅 Analyses							
	Project name :	demol	Data file :	iyabc/demo/d	demo1_2012_5_31-	1/data1.mss		
	Directory : //home/di	1 Data file info	Data file info : 12 loci (12 micro 150 individuals in 3					
	Historica	al model	Genetic d	Genetic data and Summary statistics				
	*	View		\checkmark	View			
	1 scenario		12 microsat	12 microsatellite loci		0 DNA sequence locus		
	5 historical	parameters	1 locus	group	21 summary s	tatistics		
	Simulated data sets							
		00000						
	Nun	00000						
	Run computations Stop							

5 3.5 Performing analyses

We have now everything necessary to perform analyses. The current screen shows two tabs : Reference
 table and Analyses. Let's click on the Analyses tab. We get this new screen :

8
V Reference	table 🌕 Analyses				
	Name	Туре	Parameters	Progress	
		Definen	ew analysis		

First, we need to define the analysis we want to perform. So we click on the Define new analysis button and get this new screen :

3

	evelopment version (29/05/2012)		
,	emol Go to opened project Help		
New MSS	New SNP 🖻 Open 🔒 Save 🕌 Save all		🮯 What's this
V Referen	ce table 🏾 🌏 Analyses		
	CANCEL	VALIDATE	
	CHOOSE AN ANA Analysis name :	LYSIS NAME AND TYPE	
	Each record includes 5 par There	e contains 100000 records. ameters and 21 summary statistics. Is 1 scenario.	
	Do you want to Pre-evaluate scenario-prior combinations 	Principal Component Analysis	
		 Locate observed SS among simulated SS 	
	O Compute posterior probabilities of scenarios		
	Compute posterior probabilities of scenarios Evaluate confidence in scenario choice		
		Linear discriminant analysis on SS	
	O Evaluate confidence in scenario choice	Linear discriminant analysis on SS Linear discriminant analysis on SS rs	

5

We need to choose among the six possible types of analyses (actually, only four of them are possible, since the reference table includes a single scenario). We decide to first check whether the model (scenario and parameter prior definition) is off the target or not. This can be appreciated through the analysis denominated Pre-evaluate scenario prior combination. To illustrate the result, we also ask for a principal component analysis by checking the corresponding square. Eventually, we give the name of **pre-eval1** to this first analysis. The screen now looks like this :

Referen	ce table 🛛 🌕 Analyses		
	CANCEL	VALIDATE]
	CANCEL	VALIDAIL]
	CHOOSE AN ANAL	YSIS NAME AND TYPE	
	Analysis name :	ore-eval1	
		contains 100000 records.	
		neters and 21 summary statistics. s 1 scenario.	
	Do you want to		
	Pre-evaluate scenario-prior combinations	 ✓ Principal Component Analysis ✓ Locate observed SS among simulated SS 	
	O Compute posterior probabilities of scenarios	Linear discriminant analysis on SS	
	O Evaluate confidence in scenario choice	Linear discriminant analysis on SS	
	 Estimate posterior distributions of parameters 		
	 Compute bias and precision on parameter esti 	mations	
		Principal Component Analysis	

9

After clicking on the VALIDATE button, we go back to the previous screen. However, the new analysis now appears on top of the analysis panel. For each analysis, this panel provides its name and type, the list of parameters that will be transmitted (in a coded way) to the computation program, a progress bar that approximates the progress of the analysis run, and four buttons. The right button has to be clicked to launch the analysis. The three left buttons provide a way to copy an analysis (Copy button), to make some modifications (Edit button) before launching it or to delete the analysis (Del button).

×	💙 Reference table 🛛 🌖	Analyses					
demo1		Name	Туре	Parameters	Progress		
	Edit Copy Del	pre-eval1	evaluate scenarios and p	oriors View values	0%	Launch)
				w analysis			

Let's click on the Launch button. This analysis is very fast (ca 1 second) so that the progress bar shows almost immediately a 100% value :

14

Reference table 🦂	Analyses					
	Name	Туре	Parameters	Progress		
Edit Copy Del	pre-eval1	evaluate scenarios and prior	s View values	100%	View results	

To view results, just click on the View results button. After some seconds (while the program reads the PCA result file), we can see this :

6 7

The results are shown PCA plane by PCA plane. Each (small) dot represents a simulated dataset from the reference table and the large yellow dot represents the observed data set. The initial components of datasets are the values of the summary statistics from which are computed the principal components. The four drop-lists (Scenario to draw, Horizontal axis component, Vertical axis component, Number of prior plots per scenario) can be used to explore further the results of the PCA.

- ¹³ The graphic can be printed or saved (**PRINT** and **SAVE** buttons, respectively). Clicking on the **CLOSE**
- ¹⁴ button closes the result window. Eventually, clicking on the View numerical results opens up another

¹ screen as shown below :

```
2
```

✓ Reference table €	Analyses			
F	PRINT	SAVE AS	ОК	
DIYABC :	PRIOR CHEC	KING	Fri Jun 1 16:48:32 2012	
Data file Reference table Number of simu:	: data1 e : /home lated data sets : 10000	/diyabc/demo/demo1_2012_	5_31-1/reftable.bin	
	e for each summary stat ata sets which have a v observed scenar (4.0833) 0.088 (3.5000) 0.066 (2.7500) 0.023 (0.4562) 0.090 (0.4782) 0.101 (0.3754) 0.055 (1.3355) 0.100 (1.0758) 0.043 (0.2703) 0.812 (0.3404) 0.886 (0.1064) 0.906 (1.7198) 0.078 (1.9664) 0.107 (1.7734) 0.058 (0.6758) 0.104 (1.6524) 0.043 (0.5558) 0.025 (0.5558) 0.022 (0.5558) 0.024 (0.1494) 0.180	alue below the observed 6 8 2 (*) 6 1 3 1 8 (*) 5 2 6 2 7 3 8 8 (*) 1 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	one	

3

This screen is obtained by computing for each summary statistics the proportion of simulated data (considering the total reference table) that have a value below the value of the observed dataset. A star indicates proportions lower than 5% or greater than 95% (two stars, <1% or >1%; three stars, <0.1% or >0.1%).

⁹ As usual, results can be printed (PRINT) and/or saved (SAVE). Click on OK to leave this screen.

Although we get one star for a few summary statistics, we conclude that our model is suitable enough to proceed to other ABC analyses.

¹⁴ 3.5.1 ABC parameter estimation

Back on the screen of page 30, we click on the Define new analysis button. We choose the Estimate
 posterior distribution of parameters option and we call estim1 this second analysis :

V Referen	New SNP 🛅 Open 🛛 🕁 Save 🕼 Save all		⊚What's th
	CANCEL	VALIDATE	
	CHOOSE AN ANAL	YSIS NAME AND TYPE	
	Analysis name :	astim1	
	Each record includes 5 paran	contains 100000 records. neters and 21 summary statistics. 1 scenario.	
	Do you want to O Pre-evaluate scenario-prior combinations	Principal Component Analysis Cucate observed SS among simulated SS	
	O Compute posterior probabilities of scenarios	Linear discriminant analysis on SS	
	O Evaluate confidence in scenario choice	Linear discriminant analysis on SS	
	Estimate posterior distributions of parameters		
	 Compute bias and precision on parameter esti 	mations	
		Principal Component Analysis	

- 1
- 2

We click on the VALIDATE button and get the following screen in which we can choose the scenario to use for this estimation. Since a single scenario has been defined, there is nothing else to do than to click on the VALIDATE button :

5 6

- 1	0	DIYABC d	evelopment	version	(01/06/201	2)

✓ Reference table	S Analyses	
	CANCEL	VALIDATE
	ABC parameter	restimation
	Analysis name : es	tim1
Project directory :	/home/diyabc/demo/demo1_2012_5_31-1	
	Parameters will be estimated consi	dering data sets simulated with
	Scenario 1	

7 8 9

10

- We get then the following screen in which we can make several choices :
- on the left hand side, we can choose the number of closest simulated datasets that will be used for the local linear regression (cf section 2.1).
- below, we can select the transformation of parameter values that can generally improve the results (default = logit transformation).

• on the right hand, we can truncate the reference table to a specified number of datasets.

eventually, estimations can be performed either on original (*i.e.* raw) parameters, and/or combinations of parameters that are generally more estimable. Composite parameters are products of effective population sizes or times by mean mutation rate whereas Scaled parameters are ratios of effective population sizes or times by mean effective population size (computed from all terminal populations, *i.e.* N₁, N₂ and N₃ in the present example).

	CANCEL			VALIDATE	
		ABC parame	ter estimation		
			sis estim1		
Project directory	/: /home/diyabc/demo/den	no1_2012_5_31-1			
Chosen scen	ario : 1		Total number of simul		1000
Number of select (simulated data closed)		1000			
Transformation	of parameters		Chosen number of sin	nulated data :	10000
O no	⊖ log	○ log-tg	Choice of parameter		
			✓ Original	 Composite 	✓ Scaled

Apart from the number of closest datasets that we set at 10,000 (although 1,000 would be also a correct choice), we keep all other default values and click on the VALIDATE button. We get back to the Analysis control panel which now looks like this:

12

13

	Reference tabl		en 🔒 Save 🛓					🮯 What's thi
demo1 🗶			ame	Туре	Parameters	Progress		
/ den						-]	
	Edit Copy	Del	pre-eval1	evaluate scenarios and priors	View values	100%	View results	
	Edit Copy	Del	estim1	estimate parameters	View values	0%	Launch	

	IYABC development version (01/06/2012) roject demol <u>G</u> o to opened project <u>H</u> elp	
Ne	v MSS New SNP Depen Save Save all	👂 What's t
	Preference table 🌕 Analyses	
demo1	Name Type Parameters Progress	
0	Edit Copy Del pre-eval1 evaluate scenarios and priors View values 100% View result	ts
	Edit Copy Del estim1 estimate parameters View values 786% Running	Stop
	Define new analysis	

¹ ² We click on the Launch button. The analysis progress is now visible :

As long as the analysis is not terminated, we could stop it by clicking on the Stop button. Once this
 ⁷ second analysis is finished, we can view its results by clicking on the View results button :

erence	table	. 🌏 /	Analyses				
			Name	Туре	Parameters	Progress	
Edit C	Сору	Del	pre-eval1	evaluate scenarios and priors	View values	100%	View results
Edit	Сору	Del	estim1	estimate parameters	View values	100%	View results

Let's have a look :

2

7

In the scrolling window, we get graphics showing the prior (red curve) and posterior (green curve) distributions of all parameters. Below each graphics are statistics (mean, median, mode and quantiles) of the posterior distribution. The latter are grouped in a table that appears when clicking on the upper left view numerical results button, showing this :

DIYABC development version (01/06/2012) - 🗆 x File Project demo1 Go to opened project Help 🎒 New MSS 🎬 New SNP 💼 Open 🛛 🔒 Save 🏭 Save all 🥺 What's this ? ؇ Reference table 🛛 🌖 Analyses × demo1 PRINT SAVE AS ОК DIYABC : ABC parameter estimation Fri Jun 1 17:36:35 2012 Data file : data1.mss Reference table : /home/diyabc/demo/demo1_2012_5_31-1/reftable.bin Transformation LOGIT of parameters Chosen scenario(s) : 1 Number of simulated data sets : 100000 Number of selected data sets : 10000 Parameter mean median q025 q050 q250 q750 q950 q975 mode 3.60e+03 3.08e+03 1.39e+03 2.84e+02 3.70e+03 1.54e-04 1.60e-01 8.42e-07 3.39e+03 2.72e+03 8.33e+02 2.91e+02 3.30e+03 1.31e-04 1.49e-01 1.69e-07 1.01e+03 7.06e+02 1.44e+02 4.29e+01 8.78e+02 9.90e-05 1.00e-01 1.08e-08 1.30e+03 9.10e+02 1.92e+02 6.80e+01 1.07e+03 1.01e-04 1.02e-01 1.19e-08 2.59e+03 1.76e+03 4.00e+02 2.94e+02 2.22e+03 1.07e-04 1.06e-01 1.10e-08 2.44e+03 1.79e+03 4.56e+02 1.93e+02 2.12e+03 1.13e-04 1.21e-01 3.58e-08 4.52e+03 3.94e+03 1.59e+03 3.82e+02 4.86e+03 1.65e-04 1.90e-01 8.24e-07 7.55e+03 7.94e+03 6.58e+03 4.85e+02 8.71e+03 3.56e-04 2.68e-01 6.12e-06 6.62e+03 6.76e+03 4.78e+03 4.70e+02 7.86e+03 2.81e-04 2.53e-01 4.31e-06 N1 N2 N3 t1 t2 umic_1 Pmic_1 snimic_1

We go back to the previous screen by cliking the OK button.

4 5

6 3.5.2 Bias and precision

⁷ Let's define a new analysis (click on the Define new analysis button) and choose the option Compute
⁸ bias and precision on parameter estimations. We give it the name bias1:

9

,	demo1 <u>G</u> o to opened project <u>H</u> elp New SNP Open Save		∕ What's
✓ Reference	nce table 🛛 🌕 Analyses		
	CANCEL	VALIDATE	
	CHOOSE AN ANA	LYSIS NAME AND TYPE	
	Analysis name :	bias1	
	Each record includes 5 para	contains 1000000 records. ameters and 21 summary statistics. is 1 scenario.	
	Do you want to		
	Do you want to	Principal Component Analysis Country Locate observed SS among simulated SS	
	·		
	 Pre-evaluate scenario-prior combinations 	\checkmark Locate observed SS among simulated SS	
	Pre-evaluate scenario-prior combinations Compute posterior probabilities of scenarios	Locate observed SS among simulated SS Linear discriminant analysis on SS Linear discriminant analysis on SS	
	Pre-evaluate scenario-prior combinations Compute posterior probabilities of scenarios Evaluate confidence in scenario choice	Locate observed SS among simulated SS Linear discriminant analysis on SS Linear discriminant analysis on SS s	

10 11 12

In this kind of analysis, peudo-observed datasets are simulated with known values of parameters copy-

- ¹ ing the exact configuration of the observed dataset in terms of sample sizes (taking into account missing
- ² data) and are submitted to the same ABC estimation process. If we assume that the evolutionary sce-
- $_{3}$ nario is correct, the comparison of real and estimated values of parameters provide some information of
- $_{4}$ the precision on the estimation process.
- $_{5}$ We validate and get this screen :

	CANCEL	VALIDATE
	Bias and mean so	uare error
	for analysis bias]	
	/home/estoup/Bureau/example projects for DIVABC V	2/demol 2015 6 27 1
ject directory :	Thome/estoup/Bureau/example projects for DifABC V.	/demo1_2015_6_2/-1
oject directory :		2/demo1_2015_6_27-1
oject directory :		2/06/001_2013_5_2/-1
	elect the scenario for which	/gem01_2015_6_27-1
-		//demo1_2015_6_27-1
S you	elect the scenario for which	/gem01_2015_6_27-1
S you	elect the scenario for which want to perform computations	/gem01_2015_6_27-1
S you (i.e. : s • Scenario 1	elect the scenario for which want to perform computations simulation of pseudo-observed datasets)	//dem01_2015_6_27-1
S you (i.e. : s • Scenario 1 Parameter value	elect the scenario for which want to perform computations simulation of pseudo-observed datasets) es for this scenario	//dem01_2015_6_27-1
S you (i.e. : s • Scenario 1 Parameter valu • are fixed by	elect the scenario for which want to perform computations simulation of pseudo-observed datasets) es for this scenario	//dem01_2015_6_27-1

6

The demographic, historical and mutational parameters values of the pseudo-observed-datasets (pods)
can be produced from a single scenario (here scenario 1 which is the only one avalaible in the present analysis) in three different ways:

- (i) they correspond to a set of fixed values chosen by the user;
- (ii) they are drawn drom the initial prior distributions (which can be modified by the user);

(iii) they are drawn from the parameter posterior distributions estimated using a standard ABC
 procedure. Note that computing accuracy indicators conditionally to the observed dataset (i.e. focusing
 around the observed dataset by using the posterior distributions) provide a more relevant estimation of
 accuracy of parameter estimation in the vicinity of the observed dataset (which is the location of prime
 interest in the vast data space defined by prior distributions) than blindly computing accuracy indicator
 over the whole prior space.

We first choose to draw parameter values from prior distributions by clicking on the option "are drawn from distributions (prior by default)" and on the VALIDATE button:

- 21
- 22 23
 - We get this screen which allows us to choose distributions for demographic and historical parameters.

		EXI	Г				VALIE	DATE	
					Analysis bi	asl			
so	enario 1								
0	sample 2								
t	sample 3 1 merge 2 3 2 merge 1 2	Uniform	pa-uniform	Normal	Log-normal	minimum	maximum	mean	st-deviation
t	sample 3 1 merge 2 3	Uniform	og-uniform	Normal	Log-normal	minimum	maximum	mean	st-deviation
t t	sample 3 1 merge 2 3 2 merge 1 2								
par N1	sample 3 1 merge 2 3 2 merge 1 2 ameters	۲	0	0	0	10.0	10000.0	0.0	0.0
par N1 N2	sample 3 1 merge 2 3 2 merge 1 2 ameters Set condition	•	0	0	0	10.0	10000.0	0.0	0.0

2

6

By default, the following screens suggest the prior distributions that have been used to build the reference table. However, these distributions can be edited if necessary. We decide not to change them and click on VALIDATE which brings us to the following screen :

^	Reference table S Analyses	
/ demo1	EXIT	VALIDATE
	Analys	is biasl
	Loci	Groups of loci
	locus name type motif range	Group 1 : Microsatellites
		Locus M A 1 Locus M A 2 Locus M A 3 Locus M A 4 Locus M A 5 Locus M A 5 Locus M A 7 Locus M A 7 Locus M A 7 Locus M A 7 Locus M A 10 Locus M A 11

If we want to keep the same distributions for mutation parameters as when builduing the reference table, we just click on VALIDATE. If we need to change them, we click on Set mutation model which would bring the following screen :

Reference table	Analyses				
	EXIT		V	ALIDATE	
	Set mutation mode	l of Group	1 (micros	atellites)	
Mean	Prior distribution	Minimum	Maximum	Mean	Shape
mutation rate	Unif O Log-u O Gamma	1.00E-004	1.00E-3	0.0005	2
Individuals locus	Prior distribution	Minimum	Maximum	Mean	Shape (1)
mutation rate	Gamma	1.00E-005	1.00E-002	Mean_u	2
Mean	Prior distribution	Minimum	Maximum (2)	Mean	Shape
coefficient P	● Unif O Log-u O Gamma	1.00E-001	3.00E-001	0.22	2
Individuals locus	Prior distribution	Minimum	Maximum	Mean	Shape (1)
coefficient P	Gamma	1.00E-002	9.00E-001	Mean_P	2
Mean	Prior distribution	Minimum	Maximum (3)	Mean	Shape
SNI rate	○ Unif	1.00E-008	1.00E-005	1.00E-007	2
Individuals	Prior distribution	Minimum	Maximum	Mean	Shape (1)
locus SNI rate	Gamma	1.00E-009	1.00E-004	Mean_u_SNI	2
	0 if you want all individuals loci to take t n and the maximum to 0 if you want a SI				

4

After validating twice, we get the last screen necessary to define this kind of analysis :

Reference ta	ble S Analyses CANCEL			VALIDATE	
		Bias and mea	n square erro	r	
Project directo	ory : /home/diyabc/demo/de		is bias1		
Number of sel	t data sets ted with know parameter values	500	Total number of sir in the reference ta Chosen number of	ble :	100000
Transformation 0 no	on of parameters O log	⊖ log-tg	Choice of parame	ters Composite	Scaled

5 6

This screen is similar to that for parameter estimation (see section 3.5.1). The proposed (and potentially modifiable) parameters "number of selected data" and "Chosen number of simulated data" are those that will be used to proceed the ABC parameter estimations for each pod (with parameter values drawn from prior distributions). The default number of pods (i.e. test data sets) is 500 but it can be n increased to e.g. 5,000 for a more precise estimations of the accuracy measures.

¹² After validating, we get back to the analysis panel with a third analysis defined :

•	Referen	ice table	: 🚯	Analyses				
				Name	Туре	Parameters	Progress	
	Edit	Сору	Del	pre-eval1	evaluate scenarios and prior	s View values	100%	View results
	Edit	Сору	Del	estim1	estimate parameters	View values	100%	View results
	Edit	Copy	Del	bias1	bias and precision	View values	0%	Launch
•					11			

The analysis takes some time to run compared to the previous one, because it simulates hundreds datasets and on each one, a full ABC estimation is performed. Then after some time, the analysis is

- finished:

Referen	ce table	e 🌏 Ai	nalyses					
			Name	Туре	Parameters	Progress		
Edit	Сору	Del	pre-eval1	evaluate scenarios and priors	View values	100%	View results	
Edit	Сору	Del	estim1	estimate parameters	View values	100%	View results	
Edit	Сору	Del	bias1	bias and precision	View values	100%	View results	

To view results, we click on the $\fbox{\sc view results}$ button.

1

The	results	are	visible	in	я	scrolling	window	•
1 ne	results	are	visible	111	a	scroning	window	•

	Open 🔒 Save 🕌 Save all			<u>(9)</u> WI
Original	PRINT	SAVE AS	5	ОК
DIYABC :	Bias and Mean Squ	are Error Analysis		Wed Dec
Number of selecte	1 ed data sets : 1000000 d data sets : 10000 500 test data sets			
Parameter	True values	Means	Averages Medians	
N1	4.841e+03	4.852e+03	4.797e+03	
		(4.994e+03)	(4.981e+03)	
N2	5.049e+03	5.103e+03 (4.993e+03)	5.089e+03 (4.991e+03)	
N3	4.794e+03	4.980e+03	4.882e+03	
		(5.015e+03)	(5.024e+03)	
	2.527e+02	2.322e+02	2.287e+02	
t1		(0.530+100)		
	5 0896+03	(2.538e+02)	(2.529e+02) 4.813e+03	
t1 t2	5.089e+03	(2.538e+02) 4.914e+03 (5.257e+03)	(2.529e+02) 4.813e+03 (5.257e+03)	
	5.089e+03 5.407e-04	4.914e+03 (5.257e+03) 5.515e-04	4.813e+03 (5.257e+03) 5.390e-04	
t2 umic_1	5.407e-04	4.914e+03 (5.257e+03) 5.515e-04 (5.501e-04)	4.813e+03 (5.257e+03) 5.390e-04 (5.496e-04)	
t2		4.914e+03 (5.257e+03) 5.515e-04 (5.501e-04) 1.949e-01	4.813e+03 (5.257e+03) 5.390e-04 (5.496e-04) 1.929e-01	
t2 umic_1 Pmic_1	5.407e-04 1.963e-01	4.914e+03 (5.257e+03) 5.515e-04 (5.551e-04) 1.949e-01 (1.998e-01)	4.813e+03 (5.257e+03) 5.390e-04 (5.496e-04) 1.929e-01 (1.999e-01)	
t2 umic_1	5.407e-04	4.914e+03 (5.257e+03) 5.515e-04 (5.501e-04) 1.949e-01	4.813e+03 (5.257e+03) 5.390e-04 (5.496e-04) 1.929e-01	
t2 umic_1 Pmic_1	5.407e-04 1.963e-01	4.914e+03 (5.257e+03) 5.515e-04 (5.501e-04) 1.949e-01 (1.998e-01) 1.492e-06	4.813e+03 (5.257e+03) 5.390e-04 (5.496e-04) 1.929e-01 (1.999e-01) 6.279e-07	

Accuracy measures are available for original, composite and scaled parameters. Note that there are 5 two values given for each accuracy measures. The upper value is that of the statistics computed from 6 the *posterior* distribution of parameters, *i.e.* using the genetic information provided by data. The lower value, noted between parentheses, is that of the statistics computed from the *prior* distribution of 8 parameters, *i.e.* NOT using the genetic information provided by data but only that contained q in prior distributions. The output file includes various measures of accuracy such as those detailed 10 11 in section 2.11. Smaller accuracy values (e.g. small RMSE or RMedAD values) correspond to more precise parameter estimations. Each accuracy measure is associated with a second value given between 12 parentheses corresponding to the accuracy measure without taking into account the genetic information 13 provided by the data. The comparison of the two values provides a rough assessment of the amount 14 of information provided by the genetic data in the inferential process. Note that some accuracy values 15 computed using only prior information may be (surprisingly at first sight) smaller than accuracy values 16 taking into account genetic data: this may occurs when the genetic data contain little information and 17 produce systematic estimation biases. 18

We then choose to run a new analysis of the same type but *this time drawing parameter values from posterior distributions.* We click (again) on the Define new analysis button) and choose (again) the option Compute bias and precision on parameter estimations. We give the name bias2 to this new analysis. After validating this new analysis, we click on the option "are drawn from posterior distributions" and on the VALIDATE button.

CAN	CEL	VALIDATE	
	Bias and mean s		
	for analysis bias	s2	
Project directory : /home/estoup	/Bureau/example projects for DIYABC	V2/demo1_2015_6_27-1	
Select the scen			
you want to perfo	rm computations		
	rm computations		
you want to perfo	rm computations		
you want to perfo (i.e. : simulation of pseu	rm computations do-observed datasets)		
you want to perfo (i.e. : simulation of pseu Scenario 1 Parameter values for this scenario	rm computations do-observed datasets)		
you want to perfo (i.e. : simulation of pseu Scenario 1 Parameter values for this scenario are fixed by the user	rm computations do-observed datasets) o		
you want to perfo (i.e. : simulation of pseu Scenario 1 Parameter values for this scenario	rm computations do-observed datasets) o priors by default)		

The screen immediately following is similar to that for parameter estimation (see section 3.5.1). The proposed (and potentially modifiable) parameters "number of selected data" and "Chosen number of simulated data" are those that will be used to both (i) make in a first phase an estimation of the parameter posterior distributions of the *observed dataset* (hence defining the distributions from which the parameter values of the *pods* will be drawn) and (ii) proceed the parameter estimations for each pod.

(simulated data closest to observed) 10000 Transformation of parameters Choice of parameters		CANCEL]	VALIDATE	
Project directory : /home/estoup/Bureau/example projects for DIVABC V2/demo1_2015_6_27-1 Chosen scenario : 1 Total number of simulated data in the reference table : Number of test data sets 500 Data sets simulated with how parameter values 500 Number of selected data (simulated data closest to observed) 10000 Transformation of parameters Choice of parameters			Bias and mea	an square error		
Chosen scenario : 1 Total number of simulated data in the reference table : Number of test data sets Data sets simulated with know parameter values 500 Number of selected data (simulated data closest to observed) 10000 Transformation of parameters Choice of parameters			Analy	sis bias2		
Number of test data sets 500 Number of selected data (simulated data 10000 Transformation of parameters Choice of parameters	Project director	ry : /home/estoup/Bureau/	'example projects for DIVA	BC V2/demo1_2015_6_2	27-1	
O na O lan O lanta O lanta di Onizitati di Camazzita di Castad	(simulated data clo	sest to observed) n of parameters		Choice of param	eters	1000
C no log logit log-tg Composite V Scaled	O no	⊖ log 💿 logit	○ log-tg	 Original 	✓ Composite	✓ Scaled

The default number of pods (i.e. test data sets with parameter values drawn in this case from posterior distributions) is 500 but it can be increased to e.g. 5,000 for a more precise estimations of the accuracy measures.

As for bias1 analysis, the bias2 analysis takes some time to run because it simulates hundreds test datasets (usually between 500 and 5,000 pods) and on each one, a full ABC estimation is performed. Then

⁵ after some time, the analysis is finished and one can view results by clicking click on the View results

6 button.

🖉 Reference table 🛛 🤊	Analyses			
Original O Con	nposite O Scaled	PRINT	SAVE AS	ок
DIYABC :	Bias and Mean Squar	re Error Analysis	Sat	Jun 27 17:21:52 201
Number of selecte				
Parameter N1	True values 4.992e+03	Means 4.866e+03 (4.999e+03)	Averages Medians 4.827e+03 (5.003e+03)	Modes 4.827e+03
N2	5.176e+03	5.114e+03 (5.017e+03)	5.082e+03 (5.026e+03)	5.080e+03
N3	4.906e+03	(1.940e+03) (4.988e+03)	(1.892e+03) (4.983e+03)	4.833e+03
ti	3.231e+03	2.975e+03	2.823e+03	2.523e+03
t2	6.805e+03	(3.345e+03) 6.533e+03	(2.946e+03) 6.589e+03	7.026e+03
Aµmic_1	5.509e-04	(6.667e+03) 5.763e-04	(7.072e+03) 5.665e-04	5.646e-04
pmic_1	1.982e-01	(5.496e-04) 1.924e-01	(5.520e-04) 1.900e-01	1.795e-01
snimic_1	1.409e-06	(2.000e-01) 1.589e-06 (1.444e-06)	(2.000e-01) 8.312e-07 (3.111e-07)	3.125e-07
		fean Relative Bia <i>s</i>		
Parameter N1	Means 0.062 (2.610)	Medians 0.0287 (2.61	5) Modes	
N2	0.053 (1.471)	0.0231 (1.47	4) -0.0140	
N3 t1	0.134 (2.497) 0.099 (2.817)	0.0945 (2.50 0.0086 (2.35		
	0.034 (0.192)	0.0303 (0.26		

7

⁸ Outputs are similar to those of the bias1 analysis except that the pod's parameters have been drawn ⁹ from the posterior distributions of the observed dataset. The bias2 estimation hence provides a more ¹⁰ relevant estimation of accuracy of parameter estimation in the vicinity of the observed dataset than

- blindly computing accuracy indicator over the whole prior space as in the bias1 analysis. As for the bias1 1
- analysis, the accuracy measures are available for original, composite and scaled parameters. 2

3.5.3 Model Checking 3

We now define another type of analysis called Model Checking which is used to evaluate how well the 4

scenario and priors of parameters fit the data summarized by summary statistics. This is the last option 5 6

on the following screen : DIYABC development version (15/06/2012) File Project demo1 Go to opened project Help Save al 9 What's this ? 💙 Reference table 🛛 🌖 Analyses × demo] CANCEL VALIDATE CHOOSE AN ANALYSIS NAME AND TYPE Analysis name : mc1 The reference table contains 1000000 records. Each record includes 5 parameters and 21 summary statistics There is 1 scenario. Do you want to Principal Component Analysis
 Cocate observed SS among simulated SS O Pre-evaluate scenario-prior combinations Linear discriminant analysis on SS O Compute posterior probabilities of scenarios Linear discriminant analysis on SS O Estimate posterior distributions of parameters Compute bias and precision on parameter estimations Principal Component Analysis
 Locate observed SS among simulated SS Perform model checking

8 q

We call this analysis mc1 and check the box to get a PCA performed. This PCA is computed in 10 the same way compared to that of the first option (Pre-evaluate scenario prior combinations). 11 However, new datasets simulated with parameters drawn from the posterior distributions of parameters 12 are also represented on the different planes of the PCA (but not taken in the PCA computation). 13

- We validate the above screen and get the usual next screen : 14
- 15

<u>F</u> ile F	PIYABC developmen Project demo1 <u>G</u> o w MSS New SNP V Reference table	to opened proje	ect <u>H</u> elp		🕞 🛛 😸
/demo1		CANC	EL		ALIDATE
			Model	Checking	
			Analysis name :	mcl	
	Project directory :	/home/diyabc/de	mo/demo1_2012_5_31-1		
		Parameter	s will be estimated c	onsidering data sets sim	nulated with
			Scenario 1		

that we just validate to get the following screen :

		CANCEL		VALIDATE	
			Model	Checking	
				ysis mc1	
Project	directory : /home/	/diyabc/demo/dem		,	
	n scenario : 1			Total number of simulated data in the reference table :	1000
	d data closest to observed)		10000		
Transf	ormation of parameters	5		Chosen number of simulated data :	10000
Ong	⊖ log	logit	O log-tg	Redefine summary statistics of group :	
				Number of data sets simulated from the posterior	10

5 6

In this screen which we have already seen, there is a new panel (bottom right) in which we can choose the number of datasets that we want to simulate from the posterior distributions of parameters. There is also a button Redefine summary statistics of group: shown by the pointer. This button allows to change the set of summary statistics (for a given group of loci chosen through the drop list on the right). Clicking on this button opens up the usual following screen in which, by default, are checked the summary statistics in the reference table.

	,							
	EXIT					VA	IDATE	
	S	umm	ary st	atisti	cs of gr	oup 1		
One Sample summary stat	istics							
		Samp 1	Samp 2	Samp 3				
Mean number of alleles	all none	~	<	<				
Mean genic diversity	all none	~	<	<				
Mean size variance	all none	~	•	<				
Mean Garza-Williamson's	M all none							
Mean number of alleles Mean genic diversity Mean size variance Fst Classification index Shared allele distance (dµ) ² distance	all none all none all none all none all none all none all none	- - - - - -	× × ×	· · · · · · · · · · · · · · · · · · ·				
Mean size variance Fst Classification index Shared allele distance $(d\mu)^2$ distance Admixture summary statis	all none all none all none all none all none all none tics Parental pulation 2	 ✓ ✓ 	✓✓✓	✓ ✓ ✓				

We decide to use all one-sample and two-sample summary stats :

Reference table 🛛 🈽 Ana	lyses					
	EXIT				VALIDATE	
		Sumn	nary s	tatistics	of group 1	
One Sample summary sta	istics					
		Samp 1	Samp 2	Samp 3		
Mean number of alleles	all no	ne 🖌	<	<		
Mean genic diversity	all no	ne 🖌	~	✓		
Mean size variance	all no	ne 🖌	<	<		
Mean Garza-Williamson's	M all no	ne 🖌	~	✓		
Mean number of alleles Mean genic diversity Mean size variance Fst Classification index Shared allele distance (dµ) ² distance	all none all none all none all none all none all none all none	Samp 1&2 V V V V V V V V	Samp 1&3	Samp 2&3		
Admixture summary statis Admixed Parental population population 100 1 • 1 • 1 • 1 Maximum likelihood (Choisy et al, 2004)	Parental pulation 2					

Note that when the set of summary statistics is changed (as here), it is necessary to also simulate
a large number of datasets using parameter priors to get corresponding values of the newly introduced
summary statistics. We validate twice and launch the analysis. When it is finished, we click on the
View results button and get this screen:

Clicking on the View numerical results leads to the following screen which provides, for each individ-ual summary statistics, the value in the observed dataset as well as the proportion of data sets (simulated from the posterior) that have a value lower than the observed data set.

🗸 Reference table 🛛 🧯	Analyses				
	PRINT	SAVE AS		ОК	
DIYABC :	PO	STERIOR CHECKING		Tue Jun 19 09:06:14 2012	
Data file	: data1.mss				
		c/demo/demo1_2012_5_31-1/reftab	ole.bin		
Chosen scenari					
			: 1000000		
		used in the local regression :	10000		
	of parameters		1000		
Transformation	or parameters	: LOGIC			
summary	observed	proportion			
statistics	value	(simulated <observed)< td=""><td></td><td></td><td></td></observed)<>			
NAL_1_1	4.0833	0.3590			
NAL 1 2	3.5000	0.2760			
NAL 1 3	2.7500	0.3755			
HET 1 1	0.4562	0.2715			
HET 1 2	0.4782	0.5535			
HET_1_3	0.3754	0.4290			
VAR_1_1	1.3355	0.4480			
VAR_1_2	1.0758	0.4035			
VAR_1_3	0.6574	0.2665			
MGW_1_1	1.0000	0.5800			
MGW_1_2	1.0000	0.5640			
MGW_1_3	1.0312	0.6845			
N2P_1_1&2	4.9167	0.2050			
N2P_1_1&3	4.7500	0.2855			
N2P_1_2&3	3.8333	0.2405			
H2P_1_1&2	0.5540	0.3560			
H2P_1_1&3	0.5235	0.2995			
H2P_1_2&3	0.4523	0.4545			
V2P_1_1&2	1.3393	0.2505			
V2P_1_1&3	1.1330	0.1810			
V2P_1_2&3	0.8998	0.3075			
FST_1_1&2	0.2703	0.5000			
FST_1_1&3	0.3404	0.5645			
FST_1_2&3 LIK 1 1&2	0.1064 1.7198	0.4720 0.3025			

Notice that in this computation, values that are in the interval $[s_{obs} - 0.001, s_{obs} + 0.001]$ are counted for one half those that are outside the interval. This explains why the fourth digit of the proportion can be 0 or 5 while having simulated 1000 data sets.

Here the conclusion is that the chosen model/posterior explain correctly the observed dataset (see Cornuet

¹ et al. (2010) for further illustrations).

2 3.5.4 Posterior probabilities of scenarios

- ³ Consider a new example dataset in which three populations have been sampled. We want to decide which
- $_{4}$ scenario is the best supported by data, a divergence scenario (scenario 1) or a split scenario in which the
- $_{5}$ population 3 originates from an admixture between the populations 1 and 2 (scenario 2) :

6

⁷ We first built a reference table with 1,000,000 simulated datasets (500,000 for each scenario) sum-

marized with the same statistics as above and drawing parameter values into the prior distributions
 described in the next screen.

			EXIT				CLEAR			ОК	
scenari	io 1	_ r	emove	scenar	io 2	remove					Add scen
N1 N2 0 sam 0 sam 0 sam t1 mer t2 mer	nple 1			N1 N2 0 sam 0 sam t1 spli t2 mei	ple 1						Check and scenario
Scenario	O Uniform O Other	3001	ario 1 s	o.5							
paramete	ers	Uniform	.og-uniform	Normal	Log-normal	minimu	im maximu	n	mean	st-deviation	
N1		۲				10	1.0 10000.	D	0.0	0.0	
N2 se	et condition	۲				10	10000.	0	0.0	0.0	
N3 se	et condition	۲				10	10000.	0	0.0	0.0	
t1		۲				10	10000.	D	0.0	0.0	
t2 se	et condition]	۲				10	1.0 10000.	D	0.0	0.0	
r		۲				0.	01 0.9)			

10 11

We then define a new analysis that we call $\tt comp1:$

	DIYABC development version (24/12/2012)	(- D ×
-	<u>P</u> roject demo3 <u>G</u> o to opened project <u>H</u> elp ew MSS [®] New SNP ©Open B Save B Save all	What's this ?
*	Reference table Analyses	
V demo2	CANCEL	VALIDATE
demo3 🗱	CHOOSE AN ANALYSIS	NAME AND TYPE
	Analysis name : comp1 The reference table contain Each record includes 6 parameters There are 2 sce	and 21 summary statistics.
	Do you want to	
	Pre-evaluate scenario-prior combinations	Principal Component Analysis Locate observed SS among simulated SS
	Compute posterior probabilities of scenarios	inear discriminant analysis on SS
	O Evaluate confidence in scenario choice	inear discriminant analysis on SS
	O Estimate posterior distributions of parameters	

It is worth stressing here that it is possible to replace original summary statistics (SS) by discriminant scores by checking the box Linear discriminant analysis on SS. This option is useful when there are numerous scenarios and many summary statistics (see Estoup et al. 2012). However, in the present case, this is not necessary since the analysis with a relatively few original summary statistics and only two scenarios to be compared takes only a few seconds. After clicking on the VALIDATE button, we fill in the required fields, taking default values except for the number of local linear regression (on the second screen) that we set to 10:

V R	eference table 🛛 🌕 Analy	ses		
	C	ANCEL	VALIDA	TE
		Compa	rison of scenarios	
Pro	ject directory : /home	/diyabc/demo/demo3_2013_		
	· · ·	cenarios : 1, 2	Total number of simulated data :	1000000
	Number of (simulated data Number of intermediate values ect Estimate 500	f selected data	Chosen number of simulated dat	ta : 1000000

So that we get the following screen :

Reference table 🛛 🌏 Ana	yses		<u>⊚</u> Wha
	CANCEL	VALIDATE	
	Comparis	on of scenarios	
	An	alysis compl	
Project directory : /hom	e/diyabc/demo/demo3_2013_1_19	9-1	
Chosen :	scenarios : 1, 2	Total number of simulated data :	1000000
	of selected data Ita closest to observed)	Chosen number of simulated data :	1000000
Direct Estimate	Logistic Regression		
500	10000		
500 450	▲ 10000 9000		
400	8000		
350	7000		
300			

After validating the screen above, we launch the analysis which lasts a few seconds and press on the View results button. The following screen appears:

⁹ Both analyses agree that scenario 1 is the best supported scenario in this comparison. If we click on the

¹⁰ View numerical results, the program shows a subset of numerical values used in the previous screen (i.e.

the probability values with their 95% confidence intervals for the 10 subsets of closest simulated data).
 Note that the 95% CIs can be used to ensure that probabilities are significantly different among scenarios.

Reference tabl	e 🏾 🍕 Analyses			
	PRINT	SAVE AS	ОК	
	COMPARISON ((19/1/2013)	OF SCENARIOS		
Ca	oject directory : /hom ndidate scenarios : [1 mber of simulated data	L, 2]	mo3_2013_1_19-1	
Di	rect approach			
closest 50 100 250 300 350 400 450 500	scenario 1 0.7400 [0.3555,1.00 0.7200 [0.3254,1.00 0.7057 [0.3076,1.00 0.7050 [0.3055,1.00 0.7050 [0.3055,1.00 0.7029 [0.3023,1.00 0.6925 [0.2880,1.00 0.6925 [0.2880,1.00 0.6920 [0.2873,1.00	000] 0.2600 [000] 0.2800 [0.2933 000] 0.2933 [0.2930 000] 0.2920 [0.000] 000] 0.2920 [0.000] 000] 0.29271 [0.000] 000] 0.3075 [0.000]	enario 2 0.0000, 0.6445] 0.0000, 0.6736] 0.0000, 0.6924] 0.0000, 0.6947] 0.0000, 0.6947] 0.0000, 0.6971] 0.0000, 0.6977] 0.0000, 0.7120] 0.0000, 0.7139] 0.0000, 0.7127]	
Logistic	approach			
n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	scenario 1 0.9157 [0.8457,0.96 0.9024 [0.8472,0.95 0.8954 [0.8459,0.94 0.8957 [0.8506,0.93 0.8920 [0.8528,0.93 0.8896 [0.8528,0.92 0.8865 [0.8536,0.91 0.8865 [0.8536,0.91 0.8849 [0.8550,0.91	358] 0.0843 [575] 0.0976 [[139] 0.1046 [<td]< td="" td<=""><td>enario 2 0.0142,0.1543] 0.0425,0.1528] 0.0561,0.1531] 0.0688,0.1494] 0.0688,0.1472] 0.0737,0.1472] 0.0737,0.1461] 0.0807,0.1463] 0.0828,0.1453]</td><td></td></td]<>	enario 2 0.0142,0.1543] 0.0425,0.1528] 0.0561,0.1531] 0.0688,0.1494] 0.0688,0.1472] 0.0737,0.1472] 0.0737,0.1461] 0.0807,0.1463] 0.0828,0.1453]	

³ 3.5.5 Confidence in scenario choice

⁴ This last type of analysis is aimed at evaluating with which level of confidence we can trust the previous

5 analysis. To do so, we simulate test datasets (or pods), apply the same procedure for estimating their

⁶ respective posterior probabilities and measure the proportion of times the right scenario has the highest

7 posterior probability.

 $_{\mbox{\tiny 8}}$ Let's define a new analysis, <code>conf1</code> as below:

✓ Reference table S Analyses	
CANCEL	VALIDATE
CHOOSE AN ANAL	SIS NAME AND TYPE
Analysis name :	onfl
Each record includes 6 param	ontains 1000000 records. eters and 21 summary statistics. ·2 scenarios.
Do you want to	
O Pre-evaluate scenario-prior combinations	 Principal Component Analysis Cocate observed SS among simulated SS
 Compute posterior probabilities of scenarios 	Linear discriminant analysis on SS
Evaluate confidence in scenario choice	✓ Linear discriminant analysis on SS
 Estimate posterior distributions of parameter 	rs
Compute bias and precision on parameter e	stimations

As for the previous analysis, it is possible to replace original summary statistics by discriminant scores (cf. "Linear discriminant analysis option" option; see Estoup et al. 2012). This is more useful here since confidence analyses can last hours. We hence choose to activate this option. If we do so, it is preferable to have previously computed the probabilities of scenarios from the observed dataset with the linear discriminant analysis option (cf. section 3.5.4) to homogenize treatments. Note that the computation of probabilities of scenarios from the observed dataset with the linear discriminant analysis option give similar results than those shown in section 3.5.4 (not shown).

 $_{10}$ $\,$ The next screen (below) proposes two options :

(i) Compute confidence in scenario choice drawing scenario-parameter combinations into posterior
 distributions (cf. Posterior based error);

(ii) Compute confidence in scenario choice drawing scenario-parameter combinations into prior distri butions (cf. Prior based error).

¹⁵ Let's first consider *posterior based error computations*.

C A	NCEL	VALIDATE
		•
	Type based conf	Idence
	for analysis cont1	
roject directory : /home/est	oup/Bureau/example projects for DIYABC V2/	demo3_2015_6_27-1
Posterior based error (C	SLOBAL, i.e. computation over all scenarios)	
 Prior based error 		

To compute "posterior" error rates, we simulate a large number of pseudo-observed datasets (pods) drawing (with replacement) the scenario ID and parameter values from the *s* simulated datasets closest to the observed dataset (i.e. the *s* datasets of the reference table with the smallest Euclidean distance). Typically, s = 500 but this number can be lowered to 100. For each pod produced this way, we apply the

- ⁶ same procedure for estimating their respective posterior probabilities (as in section 3.5.4) and measure
- ⁷ the proportion of times the right scenario has the highest posterior probability.

	CANCEL	VALIDATE	
	Confidence in s	scenario choice	
	Analysi	s confl	
Project directory :	/home/estoup/Bureau/example projects for DIYAB	3C V2/demo3_2015_6_27-1	
		Total number of simulated data :	1000000
		Chosen number of simulated data	1000000
Sample size(numb sets closests to the	Posterior distribution er of simulated data observed data set) 500		
•	station of scenario probabilities d data sets closest to the pseudo-observed data set		
Direct Estimate	Logistic Regression 🗸		
500	10000		
Number of pseudo-o	bserved requested 1000		

- $_{9}$ Here we choose to draw pods in the $s{=}500$ (over 1,000,000) simulated datasets closest to the observed
- ¹⁰ dataset. Scenario probabilities are estimated using both the direct approach (on the 500 closest datasets)

- and the logistic approach (on the 1%=10,000 closest datasets). Computations are processed on a total
- ² of 1,000 test datasets (pods).
- $_{3}$ Once the treatment is finished, we click on "view results".

		Save 🚽 Save all			
Reference table	🌖 Analyses				
	PRINT		SAVE AS		ОК
DIYABC :	Co	nfidence in scen	ario choice	Sat	Jun 27 18:15:55 2015
Data file					
Reference table	: /home/est	oup/Bureau/examp	le projects for DIYABC V	2/demo3_2015_6_2	7-1/reftable.bin
Number of simul Computation of	posterior sa	mple using plain	summary statistics		
		r distribution (selected data s	=simulated datasets clos	est to observed)	: 500
Logistic regres	sion : numb	er of selected d	lata sets : 10000		
Candidate scena Summary statist	irios : 1, 2 ics have bee	n replaced by co	mponents of a Linear Dis	criminant Analys	is
Posterior predi	ctive error	(computed over 1	000 data sets):		
Direct approach Logistic approa	ı: 0.0	93			
	ch : 0.0 Tue scenario	Direct L	ogistic		
		1	1		
1	1		ī		
	1 1	1			
1 2 3 4 5		1			
1 2 3 4 5 6			1 1 1 1		
1 2 3 4 5 6 7			1 1 1 1 1 1		
1 2 3 4 5 6 7 8 9					
1 2 4 5 6 7 8 9 10					
1 2 3 4 5 6 7 8 9 10 11 2					
1 3 4 5 6 7 8 9 10 11 12 12 13					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15					
1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 14 15 16 16 17					
1 2 3 4 5 6 7 8 9 9 11 12 13 14 15 16					

The posterior error rate (also named "posterior predictive error") is given as a proportion of wrongly 5 identified scenarios over the 1,000 test datasets for both the direct and the logistic approaches. Here the 6 true scenario had the highest posterior probability for 904 of the 1,000 test datasets with the logistic 7 approach and the posterior error rate is hence equal to 0.096. The scenario choice is also detailed for 8 each test dataset. Note the presence of a majority of scenario 1 and a minority of scenario 2 in the 9 test datasets. This differencial proportion in scenario ID reflects the fact that a majority of scenario ID-10 parameters combination which give simulated datasets closest to the observed dataset are produced by 11 the scenario 1 (which is expected when looking at the direct approach results in section 3.5.4). Computing 12 error rate conditionally to the observed dataset (i.e. focusing around the observed dataset by using the 13 posterior distributions) provide a more relevant estimation of our ability to choose the true scenario in 14 the vicinity of the observed dataset (which is the location of prime interest in the vast data space defined 15 by the prior distributions) than blindly computing accuracy indicator over the whole prior space. 16 Let's now consider *prior based error computations*. Prior based error computation provides an estimate 17

of a global error level over the whole (and usually huge) prior data space. Such computation and to for comparisons with the above posterior error rate, to focus investigation on a particular scenario and to select the best classifier and/or set of summary statistics (Pudlo et al. 2015). We start a new confidence

analysis (conf2) from the analyses pannel below, using again the linear discriminant analysis option.

Reference table i Analyses	
CANCEL	VALIDATE
CHOOSE AN ANA	LYSIS NAME AND TYPE
Analysis name :	conf2
Each record includes 6 para	e contains 1000000 records. ameters and 21 summary statistics. are 2 scenarios.
Do you want to	
O Pre-evaluate scenario-prior combinations	 Principal Component Analysis Locate observed SS among simulated SS
 Compute posterior probabilities of scenar 	ios 🗌 Linear discriminant analysis on SS
Evaluate confidence in scenario choice	✓ Linear discriminant analysis on SS
 Estimate posterior distributions of parameters 	eters
 Compute bias and precision on paramete 	er estimations

² Once having clicked on "validate" and "Prior based error", two options are proposed:

(i) Global (prior error rate) in which pods are drawn from a random sample of scenario ID and
 ⁴ parameter values in the prior distributions;

(ii) Scenario specific (prior error rate) in which pods are drawn from parameter prior distributions
 under a GIVEN scenario. This corresponds to the confidence in scenario choice option that was initially

⁷ available in the previous version of the program (DIYABC v2.0).

~	🖉 Reference table 🛛 📀 Analyses	
// demo 2	CANCEL	VALIDATE
demo3 ×	Type base	d confidence
/ dem	for analysis	cont2
	Project directory : //home/estoup/Bureau/example projects for D	IYABC V2/demo3_2015_6_27-1
	O Posterior based error (GLOBAL, i.e. computation over all s	cenarios)
	 Posterior based error (GLOBAL, i.e. computation over all so Prior based error 	cenarios)
		cenarios)
		cenarios) © GLOBAL (i.e. computation over all scenarios)

8

⁹ When clicking and validating the GLOBAL (prior error rate) option we go to the following screen.

	CANCEL	VALIDATE			
	Confidence in sce	enario choice			
	Analysis c	onf2			
oject directory :	/home/estoup/Bureau/example projects for DIYABC \	/2/demo3_2015_6_27-1			
		Total number of simulated data :	1000000		
		Chosen number of simulated data	1000000		
	utation of scenario probabilities d data sets closest to the pseudo-observed data set				
Direct Estimate	Logistic Regression 🗹				
Number of pseudo- test data sets	observed requested 1000				

This screen is similar to that for posterior error rate except that pods are NOT drawn from the s simulated datasets closest to the observed dataset BUT from a random sample of scenario ID and parameter values drawn in the prior distributions. We here again choose to estimate scenario probabilities using default options, i.e. using both the direct approach (on the 500 closest datasets) and the logistic

⁶ approach (on the 1%=10,000 closest datasets), and computations are processed on a total of 1,000 test ⁷ datasets (pods).

⁸ Once the treatment is finished, we click on "view results".

✔ Reference tabl	e 🛛 🌏 Analyses					
	PRINT		SA	VE AS	ок	
Number of si Direct appro Logistic reg Candidate sc	: data1.ms ble : /home/es mulated data s ach : number o ression : num enarios : 1, 2	s toup/Bureau/e ets : 1000000 f selected da ber of select	ta sets : 500 ed data sets : 1		Sat Jun 27 19:04:26 2015 8_2015_6_27-1/reftable.bin ant Analysis	
Prior predic Direct appro Logistic app Test data 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 11 14 14 15 16 17 18 19 20 21 22 23	ach : 0.	302 297	000 data sets): Logistic 2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2			

9 10

The prior error rate (also named "prior predictive error) is given as a proportion of wrongly identified

File Desiret dama 2 Cata an and ansist Usin

scenarios over the 1,000 test datasets for both the direct and the logistic approaches. The scenario choice 1 is also detailed for each test dataset. Note the presence of a an equal number of scenario 1 and 2 in the 2 test datasets as expected when randomly scenario ID and parameter values from the prior distributions. 3 The prior error rate is substantially different than the previous posterior error rate (i.e. higher in this 4 case although it might be lower in other situations). The error levels may indeed be substantially different 5 depending on the location of the pod in the data space. Indeed, some peculiar combination of scenario ID 6 and parameter values may correspond to situations of strong (weak) discrimination among the compared 7 scenarios. 8

We now illustrate the second type of prior based error analysis: scenario specific (prior error rate) in which pods are drawn from parameter prior distribution under a GIVEN scenario. We start a new confidence analysis (conf3) and validate the options "Prior based error" + "Scenario specific (default option before version 2.1)".

In the following screen we choose to simulate pods under scenario 1 drawing parameter values into prior distributions.

	CANCEL		VALIDATE
	Confidence i	n scenario choi	ce
	for analysis	conf3	
Project directory : /home/	/estoup/Bureau/example projects for D	IYABC V2/demo3_2015	5_6_27-1
	e scenario for which		
you want to	e scenario for which perform computations of pseudo-observed datasets)		Select candidate scenari you want to discriminat
you want to	perform computations		you want to discriminat
you want to (i.e. : simulation o	perform computations		you want to discriminal You must choose at least two scen
you want to (i.e. : simulation o Scenario 1	perform computations of pseudo-observed datasets)		you want to discriminal You must choose at least two scen ⊄ Scenario 1
you want to (i.e. : simulation of Scenario 1 Scenario 2	perform computations of pseudo-observed datasets)		you want to discriminal You must choose at least two scen ⊄ Scenario 1

15

After validating default values for historical and mutational parameters, we launch the analysis. When it is done, we click on the View results button and get the following screen:

Reference	table 🏾 🌏	Analyses						
	PR	INT) s/	SAVE AS			:
DIYABC :		Col	nfidence i	in scenario choice	•		Sat Jun 27 19:04	1:27 2015
Data file Reference		data1.mss /home/est/	up/Bureau	v/example projects	for DIVA	C V2/demo3	2015 6 27-1/reftable	- hin
Number of	simulated	d data set	s: 10000	000	, IOI DIIM		2015_0_2/-1/Tercable	
Logistic	regressio	ı : numbe	er of sele	data sets : 500 ected data sets :				
Historica Mutation	l paramete parameter:	ers are di s are drav	rawn from 7n from th	the following pri ne following prion	lors and/or s and/or a	r are given Tre given th	the following values e following values :	s : N1=UN[10.0, cr1(UN[1.00E-0
Candidate	scenarios	s : 1, 2		d by components of		-	-	
b dama 1 g - b	cuciscics	nave beer	i repidece	a by componence of	. u bincui	Disci ininai	e marjoro	
			nulated wi	ith scenario 1				
data <i>s</i> et	direct ap		2	logistic a scenario 1		enario 2		
1	0.836	0.164		[0.9269,0.9393] [0.3607,0.3814]		[0.0607,0.0		
23	0.788	0.212	0.9586	[0.9538,0.9634]	0.0414	[0.0366,0.0	462]	
4	0.578 0.936	0.422 0.064		[0.5893,0.6118] [0.9668,0.9748]		[0.3882,0.4		
5 6 7	0.540	0.460	0.4644	[0.4531,0.4758] [0.7766,0.7967]	0.5356	[0.5242,0.5 [0.2033,0.2	469	
8	0.698 0.834	0.302		[0.9047,0.9183]		[0.0817,0.0		
9 10	0.310	0.690 0.488		[0.1527,0.1743] [0.4858,0.5063]		[0.8257,0.8 [0.4937,0.5		
11	0.790	0.210	0.9066	[0.8987,0.9144]	0.0934	10.0856,0.1	0131	
12 13	0.814	0.186 0.580	0.9586	[0.9540,0.9632] [0.2251,0.2517]	0.0414	[0.0368,0.0 [0.7483,0.7	460]	
14	0.886	0.114	0.9980	[0.9974,0.9985]	0.0020	[0.0015,0.0	026]	
15 16	0.570	0.430 0.370		[0.6774,0.7043] [0.6966,0.7183]		[0.2957,0.3 [0.2817,0.3		
17	0.526	0.474	0.5461	[0.5354,0.5567]	0.4539	[0.4433,0.4	646]	
18 19	0.810	0.190		[0.8856,0.9017] [0.5961,0.6166]	0.1063	[0.0983,0.1 [0.3834,0.4	144]	
20	0.760	0.240	0.8260	10.8163,0.83561	0.1740	[0.1644,0.1	837]	
21 22	0.720	0.280	0.8159	[0.8062,0.8257] [0.7376,0.7586]		[0.1743,0.1		
22	0.656	0.342	0.7401	[0.7576,0.7566]	0.2519	[0.2414,0.2	024]	

Posterior probabilities (with 95% credibility intervals) are given for each pod under the direct and
 logistic approaches. At the bottom, there is a summary of results, *i.e.* the number of times each scenario
 has the highest posterior probability under each approach:

؇ Reference	table 😽 Ai	nalyses								
	PRINT			PRINT SAVE AS					ОК	
468 469 470 471 471 473 475 477 477 477 477 477 479 481 480 481 482 483 484 485 486 485 485 485 485 485 485 485 487 489 490 491 495 495 496 497 495 496 497	0.924 0.718 0.480 0.640 0.640 0.552 0.638 0.154 0.728 0.728 0.728 0.728 0.582 0.670 0.828 0.466 0.562 0.582 0.582 0.582 0.824 0.596 0.382 0.829 0	$\begin{array}{c} 0.076\\ 0.282\\ 0.550\\ 0.550\\ 0.520\\ 0.360\\ 0.448\\ 0.562\\ 0.862\\ 0.124\\ 0.272\\ 0.2124\\ 0.272\\ 0.2124\\ 0.272\\ 0.2124\\ 0.124\\ 0.124\\ 0.168\\ 0.172\\ 0.548\\ 0.168\\ 0.116\\ 0.418\\ 0.404\\ 0.418\\ 0.404\\ 0.404\\ 0.404\\ 0.404\\ 0.526\\ 0.226\\ 0.226\\ \end{array}$	$\begin{array}{c} 0.8200\\ 0.3608\\ 0.4414\\ 0.7007\\ 0.7157\\ 0.7157\\ 0.3526\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4263\\ 0.4165\\ 0.6215\\ 0.6035\\ 0.557\\ 0.8484\\ 0.403778\\ 0.6215\\ 0.6035\\ 0.5501\\ 0.8001\\ 0.8001\\ 0.8768\\ 0.56215\\ 0.5001\\ 0.8001\\ 0.8768\\ 0.56215\\ 0.5601\\ 0.8001\\ 0.8768\\ 0.56215\\ 0.5801\\ 0.8001\\ 0.8768\\ 0.5811\\ 0.8001\\ 0.8011\\ 0.8768\\ 0.53137\\ 0.2844\\ 0.63317\\ 0.6326\\ 0.3317\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.633128\\ 0.63318$	$ \begin{bmatrix} 0, 9763, 0, 9821 \\ [0, 8081, 0, 8318] \\ [0, 3489, 0, 3727] \\ [0, 4304, 0, 4523] \\ [0, 6894, 0, 7120] \\ [0, 9035, 0, 9204] \\ [0, 9035, 0, 9204] \\ [0, 9035, 0, 9204] \\ [0, 9035, 0, 9204] \\ [0, 3366, 0, 3665] \\ [0, 4148, 0, 4378] \\ [0, 3366, 0, 3665] \\ [0, 4134, 0, 4378] \\ [0, 7580, 0, 7738] \\ [0, 7583, 0, 67738] \\ [0, 7593, 0, 7789] \\ [0, 4334, 0, 4596] \\ [0, 4334, 0, 4596] \\ [0, 4337, 0, 8570] \\ [0, 3675, 0, 3881] \\ [0, 3675, 0, 3881] \\ [0, 3675, 0, 3881] \\ [0, 4134, 0, 4596] \\ [0, 4572, 0, 4150] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 6116] \\ [0, 5923, 0, 9149] \\ [0, 2727, 0, 2960] \\ [0, 6710, 0, 6932] \\ [0, 4227, 0, 3417] \\ [0, 4206, 4519] \\ [0, 7982, 0, 8157] \\ \end{bmatrix} $	$\begin{array}{c} 0.1800\\ 0.6392\\ 0.5886\\ 0.2993\\ 0.2843\\ 0.0880\\ 0.9200\\ 0.6474\\ 0.5737\\ 0.0771\\ 0.0771\\ 0.2362\\ 0.2201\\ 0.5535\\ 0.3903\\ 0.1516\\ 1.0.6522\\ 0.3785\\ 0.4403\\ 0.5514\\ 0.3965\\ 0.4403\\ 0.1996\\ 0.1232\\ 0.0563\\ 0.7156\\ 0.3179\\ 0.1263\\ 0.3179\\ 0.3674\\ 0.6683\\ 0.5588\end{array}$	$\begin{array}{c} (0,0179,0.)\\ (0,6273,0.)\\ (0,5273,0.)\\ (0,5273,0.)\\ (0,5274,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,796,0.)\\ (0,794$	1919) 6511] 5696] 3106] 2961] 0965] 9271] 5852] 0831] 2462] 2300] 5666] 4017] 5666] 4017] 5666] 4017] 1314] 0538] 5428] 1314] 0617] 1314] 0617] 1314] 0617] 7273] 3772] 6783] 5694]		2	
Total	f times the 347 ration =23 m	153	has the	highest posterior 341	probabili	159			=	

7 8

⁹ We can deduce the so-called *type I error for scenario 1*, which is the probability with which it is ¹⁰ rejected although it is the true scenario : 153 using the direct method (or 159 using the regression

method) over 500, *i.e.* 0.306 (0.318). To have access to the type II error (probability of deciding for 1 scenario 1 when it is not the true scenario), we need to run the same analysis but simulating according 2 to all other scenarios (only scenario 2 in the present example) and counting decisions in favor of scenario 3 1. Running the example analysis with scenario 2 gives 165 (or 141) over 500 in favor of scenario 1. This 4 gives an estimate of a so-called type II error of 0.330 (0.282) for scenario 1. 5

Simulating data sets 3.6 6

The DIYABC program can also be used to simulate data sets, either microsatellite and/or DNA sequence 7 data sets using our Genepop format, or SNP data sets using our specific format. This option is reachable 8

- through the main File menu as shown below : 9
- 10

11 12

Clicking on e.g. the Microsatellites and/or sequences (Genepop format) opens up a dialog window in 13 which one can choose the directory into which will be located the project and the future data files : 14

15				
	Select n	ame and location of the new simulated da	ta set(s)	0 😣
	Look in:	📄 /home/diyabc/demo	•> 🕈	📷 📰 🔳
	Com	demo1_2012_5_31-1 data1.mss		
	Comu	udd1.mss		
			N	
			\$	
	4			
	Data file generic name	demo2		Ok
16	Files of type:	All Files (*)	\$	Cancel
17				

- Above, we decided to call demo2 this new directory and to locate it in the home/DIYABC/demo 18 directory. 19
- Clicking on OK leads to usual screen: 20
- 21

*	Simulate data sets					
	Data file generic name :		demo2			
	Target directory : [/home/diyabc/demo/demo2_		19-1			
	Historical mo	odel	Geneti	c data		
	*	Set	*	Set		
	Simulated data sets					
	Tota	l required number of simulated da	ata sets			
		Run computatio	ons	Stop		

We first inform the historical model clicking on the Set button under Historical model. We edit the scenario box as below:

[SIM]demo2 *	Simulate data sets		
	EXIT	CLEAR	VALIDATE
(2)	scenario 1 N1 N2 N3 0 sample 1 0 sample 2 1 merge 2 3 12 merge 1 2		Check and dra scenario Set paramete values
	Define number for of female		

We click on the Set parameter values button. Arbitrary default values appear :

🗱 Simulate data sets			
EX		CLEAR	VALIDATE
scenario 1 N1 N2 N3 0 sample 1 0 sample 2 0 sample 3 t1 merge 2 3 t2 merge 1 2			Check and dra scenario Set paramete values Set sample siz
parameters	Value		
N1	1000		
N2	1000		
N3	1000		
t1	1000		
t2	1000		
Define number for of female			

We change these values according to our needs and we click the Set sample size button, getting this screen:

5	

*	Simulate data sets				
	E	KIT	CLEAR	VALIDA	TE
	scenario 1 N1 N2 N3 0 sample 1 0 sample 2 0 sample 3 t1 merge 2 3 t2 merge 1 2				Check and draw scenario Set parameter values Set sample size
	parameters	Value			
	N1	1000			
	N2	3000			
	N3	9000			
	t1	500			
	t2	5000			
	Define number for of female	sample 1 sample 2 sam 25 25 25 25	ole 3		

We input the needed sample sizes as below :

*	Simulate data sets			
	E	KIT	CLEAR	VALIDATE
	scenario 1			Check and draw scenario
	N1 N2 N3 0 sample 1 0 sample 2 0 sample 3 t1 merge 2 3			Set parameter values
	t2 merge 1 2			Set sample size
	parameters	Value		
	N1	1000		
	N2	3000		
	N3	9000		
	t1	500		
	t2	5000		
	Define number for of female		nple 3 B	

Clicking on the VALIDATE button, we get back to the previous screen showing that the Historical model is now completed:

*	Simulate data sets	
	Data file generic name :	demo2
	Target directory : //home/diyabc/demo/d	emo2_2012_6_19-1
	Historical model	Genetic data
	Set Set	Set
	1 scenario 5 historical parameters	
	Simu	ated data sets
	Total required number of	i simulated data sets
	Run co	mputations Stop

We have now to complete the Genetic data (click on the Set button under Genetic data). The fol lowing screen appears:

*	Simulate data sets			
	Choose locus n	umber in order	to set genetic data	Ok
	Microsatellites lo	cus	DNA sequence lo	ocus
		number		number
	Autosomal diploid	0	Autosomal diploid	0
	Autosomal haploid	0	Autosomal haploid	0
	X-linked	0	X-linked	0
	Y-linked	0	Y-linked	0
	Mitochondrial	0	Mitochondrial	0
	Proportion of m	Sex ratio (SR) ale individuals in the popu 0 < SR < 1	ulation 0.5	

 We want a data set including three autosomal, two X-linked and one Y-linked diploid microsatellite loci and one mitochondrial sequence. We also need a sex ratio of one male for four females :

?

	oject demo2 <u>G</u> o to opened project <u>H</u> e MSS New SNP Open Save Simulate data sets			<mark>⊘</mark> What's
[SIM]demo2 \$	Choose locus n	umber in order	to set genetic data	Ok
/[3	Microsatellites lo	cus	DNA sequence locus	5
		number		number
	Autosomal diploid	3	Autosomal diploid	0
	Autosomal haploid	0	Autosomal haploid	0
	X-linked	2	X-linked	0
	Y-linked	1	Y-linked	0
	Mitochondrial	0	Mitochondrial	1
	Proportion of m	Sex ratio (SR) ale individuals in the popu 0 < SR < 1	ulation 0.2	

We click on the **OK** button and get the following screen :
ci locus nan						-	_	С
locus nan								
		motif 2		length	%A	%C	%G	%Т
ma_1	м							
ma_2	м	2						
ma_3	М	2	40					
mx_1	м	2						
mx_2	М	2	40					
my_1	м	2	40					
sm_1	s			1000	25	25	25	25

 Our mitochondrial DNA sequence is only 500 nucleotides long and there is a slight excess of A+T

(60%). We edit the corresponding cells :

Simulate d	ata sets									
	E	EXIT						С	EAR	VALIDATE
oci									Groups of loci	Add group
locus na	1	motif		length	%A	%C	%G	%Т		
l ma_1	м	2								
2 ma_2	м	2	40							
3 ma_3	м	2	40							
1 mx_1	м	2	40							
5 mx_2	м	2	40							
5 my_1	м	2	40							
7 sm_1	s			500	30	20	20	30		

Since mutation models are different for microsatellites and DNA sequences, we define two groups by
 clicking twice on the Add group button :

	ſ		Е	XIT						С	EAI	۹		VALID	ATE
Ļ	00	-1													
Ē		locus name	type	motif	range	length	%A	%C	%G	%Т	Gn	oups of loci			Add group
	1	ma_1	M	2	40		,					Group 1			
		ma_2	м	2	40								Remove	group	
		ma_3	м	2	40							>>			
			м	2	40										Set mutation Model
		 mx_2	м	2	40							<<			Model
		_ my 1	м	2	40										
		sm_1	s			500	30	20	20	30					
		-										Group 2			
													Remove	group	
												>>			
															Set mutation Model
												<<			

We select the 6 microsatellite loci by clicking on the first locus name cell and shift-clicking on the sixth locus name cell :

		E	XIT						С	EΑ	AR	VALI	DATE
Lo	ci									G	Groups of loci		Add group
	locus name	type			length	%A	%C	%G	%Т		Crown 1		
1	ma_1	м	2	40							Group 1	D	
2	ma_2	м	2	40								Remove group	_
3	ma_3	м	2	40							>>		
4	mx_1	м	2	40									Set mutation Model
5	mx_2	м	2	40							<<		
e	my_1	м	2	40									
7	sm_1	s			500	30 2	20	20	30				
											Group 2		
												Remove group	
											>>		
													Set mutation Model
											<<		

The six locus names are transferred into group 1 by clicking on the >> button :

New	roject demo2 Go to opened project Help v MSS New SNP Copen Gave Save	e all				<mark>⊘</mark> What's
	EXIT		CI	EAR	VALI	DATE
	Loci locus name type motif range length %A 7 sm_1 S 500 30	%C %G 20 20	%T 30	Groups of loci	Remove group	Add group
				>> ma_1 ma_2 ma_3 mx_1 mx_2 my_1		Set mutation Model
				Group 2	Remove group	
				<<		Set mutation Model

Then the DNA sequence locus is selected :

and transferred into group 2 in the same way :

EXIT	CLEAR	VALIDATE
Loci	Groups of loci	Add group tes Remove group Remove group Set mutation Model Set mutation Model

5

We need now to define the mutation model of each group (note that we not any mutation model needs to be defined for SNP loci cf. section 2.4). Let's click on the Set Mutation Model button of group 1:

*	Simulate data sets				
	EXIT		VA	LIDATE	
	Set mutation mod	lel of Group 1	(microsat	ellites)	
	Mean mutation 5.00E-4 rate				
	Individuals locus mutation rate (shape of the gamma) (1)	Minimum	Maximum	Mean Mean_u	Shape (1)
	Mean coefficient P 0.22 (2)				
	Individuals locus coefficient P (shape of the gamma) (1) (1)	Minimum	Maximum 9.00E-001	Mean Mean_P	Shape (1)
	Mean SNI 1.00E-8 rate (3)				
	Individuals Prior distribution locus SNI rate (shape of the gamma) © Gamma	Minimum	Maximum	Mean	Shape (1)
		1.00E-009	1.00E-004	Mean_u_SNI	2
	 Set the shape to 0 if you want all individuals loci to take t Set the minimum and to 0 if you want a Stepwise Mutation Set the minimum and to 0 if you want to exclude Single 1 	on Model (SMM)			

6 7

The usual default values appear. We want to exclude single nucleotide insertions/deletions (SNI muta tions). So we set to 0 the Mean SNI rate and Minimum, Maximum and Shape of individual loci SNI rates :

	EVIT	VALIDATE							
	EXIT		VA	LIDAIE					
	Set mutation mo	del of Group 1	(microsat	tellites)					
Mean mutation rate	5.00E-4								
Individuals locu mutation rate		Minimum	Maximum	Mean	Shape (1)				
(shape of the gan (1)	nma) 💿 Gamma	1.00E-005	1.00E-002	Mean_u	2				
Mean coefficient P (2)	0.22								
Individuals locu coefficient P	Prior distribution	Minimum	Maximum	Mean	Shape (1)				
(shape of the gam (1)	nma) 💿 Gamma	1.00E-002	9.00E-001	Mean_P	2				
Mean SNI rate (3)	0								
Individuals locus SNI rate	Prior distribution	Minimum	Maximum	Mean	Shape (1)				
(shape of the gan (1)	nma) 💿 Gamma	0	0	Mean_u_SNI	0				
	if you want all individuals loci to take	the same value (=mean)							
	if you want all individuals loci to take	the same value (=mean)							

Once this done, we go back to the previous screen by clicking on the VALIDATE button. Then we set the mutation model of the mitochondrial DNA sequence. The default values are as follows :

3
4
5

Simulate data sets	oen 🗟 Save 🕌 Save all	🤗 Wha
	EXIT	VALIDATE
	Set mutation model o	of Group 2 (sequences)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.00E-9 1.00E-6 10 Prior distribution Gamma Minimum Maximum	Mean Shape (1) Mean_u 2 Mean_shape (1) Mutation model Mean_u 2 Mean Shape (1) Mean Shape (1) Mean_k1 2

> ⁸ The default mean mutation rate is not suited to mitochondrial DNA which generally evolves at a ⁹ faster rate than nuclear DNA (Haag-Liautard *et al.*, 2008). So we set its value to 10^{-8} . For all other ¹⁰ parameters, we just keep the default values:

(
	EXIT		VA	LIDATE
	Set mutation	model of Gro	oup 2 (seque	nces)
Mean mutation rate (per site per generation)	1.00E-8 Prior distribution			Mutation model O Jukes Kantor (1969) ® Kimura 2 Parameters (1980)
mutation rate (Gamma distribution around mean) (shape of the gamma (1)	Gamma	Maximum Mean		 Hasegawa-Kishino-Yano (1985) Tamura Nei (1993)
Mean coefficient k_C/T	10			% of invariant sites :
Individuals locus coefficient k_C/T (Gamma distribution around mean) (shape of the gamma (1)	Gamma	Maximum Mean		Shape of the gamma : 2.0
(1) Set the shape to 0 if y	vou want all individuals loci to ta	ke the same value (=me	an)	

	MSS New SNP Open Save Save all	∕⊘What's t			
	Data file generic name :	demo2			
	Target directory : /home/diyabc/de	mo/demo2_2012_6_19-1			
	Historical model	Genetic data			
	Set Set	Set			
	1 scenario 5 historical parameters	6 microsatellites loci 1 DNA sequences loci 2 locus groups			
	Simulated data sets				
Total required number of simulated data sets		per of simulated data sets			
	Rur	computations Stop			

We require 10 simulated data sets :

•	Simulate data sets					
	Data file generic name :		demo2			
	Target directory :	/home/diyabc/demo/demo2_2012_6_19-1				
	Historical model		Genetic data			
	\checkmark	Set	✓	Set		
	1 scenario 5 historical parar		6 microsatellites loci 2 locus groups	1 DNA sequences loci		
	Simulated data sets					
	т	btal required number of sir	mulated data sets	10		
		Run com	putations	Stop		

×	v MSS [©] New SNP ©Open 	😥 What			
[SIM]demo2	Data file generic name :	demo2			
	Target directory : /home/diyabc/demo/	demo2_2012_6_19-1			
	Historical model	Genetic data			
	Set Set	Set Set			
	1 scenario 5 historical parameters	6 microsatellites loci 1 DNA sequences loci 2 locus groups			
	Simulated data sets				
	Total required number of simulated data sets 10				
	Simulation terminated. Files created in target directory				

Using the file manager, we can check that ten new files $(demo2_010.mss)$ to $demo2_010.mss$ have been added to new directory :

We then click on the Run computation button. In a matter of seconds, the computation ends up:

7

demo2_2012_6_19-1					8
<u>F</u> ichier É <u>d</u> ition <u>A</u> ffichage Aller à <u>S</u> ignets Aide					
Périphériques	home	diyabc	demo	demo2_2012_6_19-1	🧔 🌸 🔍
 Système de fichiers Système de fichiers 26 Poste de travail Dossier personnel Bureau Documents Téléchargements Musique Images Vidéos Système de fichiers Système de fichiers Corbeille Réseau Explorer le réseau 	demo2 demo2 demo2 demo2 demo2 demo2 demo2 demo2 demo2 demo2 headel init_m progre		5 5 5 5 5 5 5 5 5		

Opening e.g. the second one with a text editor, we can have a partial view of the simulated genotypes of the first population sample :

Nouveau 🖵 Ouvrir 🔲	Enregistrer A Enregistrer sous	Sermer Annuler	Refaire Reloa	d All 🗐 Save All 👍 Précédent 📥 Suivant
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Refaire Reloa 203205 000 205203 000 205203 000 203203 000 203203 000 203203 000 203203 000 203203 000 203203 000 203203 000 203203 000 203199 000 203199 000 203203 000	d All 🔛 Save All 🗼 Précédent 🌩 Suivant <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAGGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAGGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAGGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAGGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTGT
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19/19/ 205205 197207 197197 205205 107207 197199 205 107207 197199 205 107207 195197 205 107207 195197 205 107207 195197 205 109201 197197 205 109201 197197 205 109201 197197 205 109201 197197 205 107207 199197 207 109201 197197 205 107201 197197 205 107201 197197 205 107201 197197 205 107201 197197 205 107203 197197 205 107204 197197 205 107205 197197 205 101207 197197 205 101207 197197 205	203203 600 203203 000 203 195	ELATATGTAAGTTTATTECACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTTATTECACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTTATTECACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG ELATATGTAAGTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGATG ELATAGTAAGTTATATCCACTGACGAACTAGGAACTATGGAACTATCCATAACGTGATG ELATAGTAAGTTAAGTTAATCCACTGAGGAACTAGTGGAACTATCCATAACGTGACTATCACTAACGTGACTATCACTAACGACTATCATAACGAACTATCATAACGAACTATCATAACGAACTATACCATAACGAACTATCATAACGAACTAACGAACT
	39 1.030 209209 2 40 1.031 209209 2 41 1.032 207209 2 42 1.033 209209 2 43 POP 2 2 44 2.001 205207 1 45 2.002 207211 1 46 2.003 205207 2	199201 205 101201 201197 205 101201 201197 205 101203 201201 205 101207 201197 201 199199 205205 201201 199195 205205 199201 101197 205205 201291 199199 199201 199203	203 195 203 195 203 195 203 195 203 195 203 195 201207 000 207203 000 205207 000	<[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <[CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG <]CATATGTAAGTTTATTCCACTGACTCAGGAACATGATGGAACTATCCATAACGTGTG

We can check that the sex ratio is correct : the number of males is one fourth the number of females. The type of each locus given after the name is also correct. All microsatellite allelic values are odd, a greement with the motif length (2) and the absence of single nucleotide insertion/deletion. More interestingly, it gives an example of how X- and Y-linked microsatellite loci must be written for each sex (here 15 females and 18 males) in our Genepop format.

In the same spirit and following similar implementation steps, the option "Simulate dataset(s)" allows 8 producing SNP dataset files too (see the first demonstration screen of this section 3.6). The SNP data 9 are produced following the Hudson's simulation algorithm (Hudson 2002; Cornuet et al. 2014). Each 10 locus will hence be characterized by the presence of at least a single copy of a variant over all genes 11 sampled from all studied populations (i.e. pooling all genes genotyped at the locus). The format of the 12 produced SNP genotype datasets is the DIYABC format chosen for SNPs and detailed in section 4.4. 13 The produced dataset(s) can hence be directly analyzed using DIYABC as pseudo-observed dataset(s) for 14 which the scenario and the parameter values are known. Note that it is possible to subsequently apply 15 a different MAF criterion on the pseudo-observed dataset before running an ABC analysis by replacing 16 in the headline of the pseudo-observed dataset the instruction $\langle MAF=hudson \rangle$ by $\langle MAF=X.XX \rangle$ (for 17

 $_{\mbox{\tiny 18}}$ instance $<\!MAF{=}0.05{>}).$

¹⁹ 3.7 The Settings option of the File menu

 $_{\rm 20}~$ Let us now detail what is under the Settings option of the File menu shown below :

¹ Clicking on the Settings option opens up the following multitab window :

³ 3.7.1 Tab "various"

⁴ The first tab "various" contains the following settings :

What's this is a help functionnality that allows the user to obtain a help message when pointing towards a specific feature of the graphic interface such as a button or an edit field. This help functionnality can be activated by checking the corresponding box.

⁸ 2. Checking this box is mainly for debugging purpose or signalling a bug.

3. DIYABC is made of two programs : the graphic interface and a computation program. When the user clicks on buttons such as Run computation or Launch, the graphic interface programs sends a command that launches the computation program. To issue this command, the graphic interface needs to know where the computation program executable is located. There is a default location which depends on the operating system. Clicking on the box Use default executable check will direct the graphic interface to use the executable located in this default directory.

4. You can also choose another location (e.g. if you want to use a distinct version of the executable)
 by clicking on the browse button.

DIYABC development version (05/	0/2012)		
Help ew MSS New SNP 🖿 Open 🛛 Sav	이 민준아이 에		ØWhat's the
w MSS New SNF Dopen asav			what's th
		Settings	
uster various appearance H	istorical MM Micro	osats MM Sequences	
✓ Activate what's this help functionnality			
- Show object name in what's this			
Show object name in what's this (needs restart)			
Use default executable check			
Path to the executable file browse	'home/diyabc/general		
Particle loop size 1000			
Maximum thread number		8	\$
Maximum log level		3 : Small actions	
Maximum number of memorized recent pr	oiects	20	
Graphics and pictures save format (scenario trees, PCA graphics)		pdf	\$
Cancel		Save	
cancer		5476	

17 18

19

20

21

22

- 5. The next setting Particle loop size defines the number of data sets (n) that are simulated in a single block when building the reference table. The computation program proceeds as follows : it first simulate and compute summary statistics of n data sets. When this is done, it writes the results to the reference table file. The reason of doing like this is that computation can be multithreaded but not the file writing.
- 6. The graphic interface can detect the number of cores of the computer processor. By default, it sets the number of threads of the computation program to this core number. However, if the user wants to keep some cores for other purposes, the number of threads can be reduced by on the corresponding button (drop down menu shown below).

DIYABC development version (05/10/2012)		- • ×
e <u>H</u> elp		
New MSS New SNP Depen 🔒 Save 🕌 Save all		𝔥 What's this ?
Se	ettings	
cluster various appearance Historical MM Microsat	ts MM Sequences	
Activate what's this help functionnality		<u> </u>
Show object name in what's this (needs restart)		
Use default executable check	1	
Path to the executable file browse //home/diyabc/general	2 3 4	
Particle loop size 1000	5 6 7	=
Maximum thread number	8	 }
Maximum log level	3 : Small actions	\$
Maximum number of memorized recent projects	20	
Graphics and pictures save format (scenario trees, PCA graphics)	pdf	÷
Cancel	Save	
Cancel	Save	

 7. The next setting (Maximum log level) is for debugging pupose and/or signalling a bug (from 1=low information level to 4=high information level).

8. The graphic interface memorizes recently opened projects. The edit field is used to set the maximum of memorized recent projects.

9. The last setting concerns the format of graphic files output by different analyses. Choice is shown
 below:

w MSS New SNP 🖻 Open 📓 Save 🗐 Save a		👳 Wha
	Settings	
uster various appearance Historical	MM Microsats MM Sequences	
✓ Activate what's this help functionnality		
Show object name in what's this (needs restart)		
Use default executable check		
Path to the executable file browse //home/diyabc/	general	
Particle loop size 1000		
Maximum thread number	8	\$
Maximum log level	3 : Small actions	÷
Maximum number of memorized recent projects	20	
Graphics and pictures save format	pdf	
(scenario trees, PCA graphics)	svg	
Cancel	jpg png	

¹¹ Eventually, if changes have been made, they can be either saved or cancelled (two bottom buttons).

¹ 3.7.2 Tab "appearance"

² Clicking on this tab results in the following screen :

New MSS 🎦 New SNP 🖻 Open 🔓	Save 🔛 Save all	
	Settings	
cluster various appearance	Historical MM Microsats MM See	quences
Show tray icon		
Style	Cleanlooks	
Window background color	default	•
	Change font options (need	a restart)

The window style can be chosen among the following (click on the upper drop down menu) :

DIYABC development version (05/10/2012) - 0					
File Help					
 Mew MSS Mew SNP □Open □ Save □ Save all	ØWhat's this ?				
s	Settings				
cluster various appearance Historical MM Micros	Ats Windows Motif				
Show tray icon	CDE				
Show tray icon	Plastique				
	GTK+				
Style	Cleanlooks				
Window background color	default				
Changes factor	ntione (needs restart)				
Change font o	ptions (needs restart)				
Cancel	- Couro				
Cancel	Save				

Likewise, the background color can be chosen among the following colours :

DIYABC development version (05/10/2012)		-
Help ew MSSENew SNP Open Save Save all		⊚What's t
	Settings	
luster various appearance Historical MM Micros	ats MM Sequences	
Show tray icon		
Style	Cleanlooks	\$
	cicamoria	
Window background color	default	\$
Channe faithe	white	13
Change font o	pink	-
	green	
	yellow	
	red	
Cancel	Save	-

³ Eventually, one can change the font of texts appearing in the different windows by clicking on the

- ⁴ corresponding button. A usual font menu then appears allowing the desired change :
- 5

Select Font		08
Eont DejaVu Sans	Font style	<u>S</u> ize
Bitstream Charter Century Schoolbook L Comic Sans MS Cortoba Courier 10 Pitch Courier 10 Pitch Courier New DejaVU Sans	Kormai Light Light Oblique Normal Oblique Bold Bold Oblique	8 7 8 9 10 11 12 **
Effects Strikeout Underline	Sample	aBbYyZz
Writing System Any	•	<u>Cancel</u>

6 7

8 3.7.3 Tab "cluster"

The third tab is related to the use of a computer cluster to perform computations of the reference table.
If you have access to a computer cluster and if the computer cluster runs a scheduler queuing system,
then you can use it to generate the reference table (detailed in section 5). You will need to :

- 12 1. check the box Use a cluster (...)
- ¹³ 2. indicate the number of data sets produced by each single job of the queue
- ¹⁴ 3. indicate the number of cores used by each single job of the queue
- 4. indicate the number of concurrent jobs running at the same time on the cluster
- indicate the seed to start the generation of RNG files. Leave it blank or write None to use a random
 seed

The next two text frames deals with first and last parts of the main script running on the cluster. This
 bash script will submit jobs to the scheduler queuing system :

20 1. the first part is not editable as it include the variables used by DIYABC GUI frontend

- 2. the last part deals with the jobs submission. You can edit it to match the specification of your
- ² scheduler : submission syntax, queue, ... By default, the code targets a Grid Engine cluster. Please
- $_{\rm 3}$ ask for help to your cluster system administration.
- 4 Clicking on the Run computation button generates a bundle (*i.e.* a set of zipped files) including all you
- ⁵ need to generate your reference table. You need to transfer the bundle in your cluster account and run it.
- $_{\rm 6}$ $\,$ Once all conputations are done and all the reference table parts are merged in one, you have to transfert
- the merged reference table back to your DIYABC project on your own computer to proceed subsequent
 analyses with the DIYABC GUI. All above steps are further detailed in section 5..

lew MSS 🕋 New SNP 💼 Open 🛛 🖓 Sa	ve 📮 Save all	
	Settings	
arious appearance cluster his	torical MM Microsats MM Sequences	
✓ Use a cluster (don't check if you o	lon't know what it is)	
Number of records to generate for e	ach job (granularity) 100000	
number of cores used by each job	1	
Maximum number of jobs running a	the same time in the cluster (number of RNG's to generate)	250
seed to generate all RNG files (if set	to negative then a random seed will be used) -1	
The diabc binary is on :	local	\$
Path to the diyabc binary on your co	mputer (local) browse //usr/local/bin/diyabc	
NOT EDITABLE ! First part of the script to run on your cluster master node (this first part will be merged with the second part in order to obtain the launch.sh script)	#I/bin/bash numSimulatedDataSet= numSimulatedDataSetByJob= coresPerjob= maxConcurrentJobs= (
Cancel	Reset default values	Save

11 3.7.4 Tabs "MM Microsats" and "MM Sequences"

These two tabs are used to modify the default values of mutation parameters (MM means Mutation
 Model), for microsatellites and DNA sequences respectively. As an example, here is the screen corre sponding to the tab "MM Sequences" :

		Settings	
uster various	appearance Historical	MM Microsats MM Sequences	
	Default values	for mutation model of	of Sequences
Mean mutation rate (per site per generation) Individual locus mutation rate (Gamma distribution around mean) Mean coefficient k_C/T Individual locus coefficient k_C/T	Prior distribution Unif Log-u Gamma Prior distribution	Minimum Maximum Mean Shape 1.00E-9 1.00E-7 5E-9 2 Minimum Maximum Mean Shape (1) 1.00E-9 1.00E-6 ean_u 2 Minimum Maximum Mean Shape 0.050 20 10 2 Minimum Maximum Mean Shape 0.050 20 10 2 Minimum Maximum Mean Shape 100 2 10 2	Mutation model Jukes Kantor (1969) Kimura 2 Parameters (1980) Hasegawa-Kishino-Yano (1985) Tamura Nei (1993) % of invariant sites : 10 Shape of the gamma : 2.00
(Gamma distribution around mean) 1) Set the shape to 0 i	f you want all individual loci to ta	0.050 20 an_k1 2 ace the same value (=mean)	Save

³ The initial default values have been obtained through literature compilation and are valid for a large

⁴ number of species. However, some species may have values that differ substantially from most species.

 $_5$ For instance, the mutation rate of some *Drosophila* species are much lower than the values encountered

 $_{6}$ in many other species (Schug *et al.*, 1997; V'azquez *et al.*, 2000) and is outside the range indicated in the

7 initial default values.

¹ 4. Implementation details

² 4.1 Software design

³ DIYABC v2 has been designed in a very different way compared to version 1. Version 1 was a single ⁴ executable file were the GUI ⁵ and computation codes were highly intricated and both written in the same ⁵ language (*Delphi*). In version 2, the GUI and the computation codes have been completely separated.

⁶ Actually, the GUI is a script written in *python* and all computations are included in a program written

 τ in C++. In opposition to *Delphi* which is restricted to a single OS (Windows), python and C++ can

⁸ be used with the main three OS (Linux, Mac and Windows), allowing version 2 to be operated under all

 $_{9}$ three OS.

 $_{10}$ The GUI uses the Qt graphic library. The computation code is linked to the *openmp* library allowing a

¹¹ better use of multicore/multiprocessor computers.

The GUI can launch the computation program with the right parameters and keeps track of the progress of the latter through small log files. The GUI can launch as many computation programs as there are

¹⁴ open projects, but no more than one computation program per project. A *lock* file located in the project

¹⁵ directory is created when the computation program is launched by the GUI and removed when the

¹⁶ computation program has normally terminated. When the computation program has exited anormaly,

¹⁷ the GUI issues an error message trying to explain where the programm failed.

¹⁸ 4.2 Files

¹⁹ The program uses and produces various files which we will describe now.

20 **4.2.1** data files

Data files are text files that contain information about the samples : number and names of microsatellite markers, multilocus genotypes of individuals. The basic format is that of the Genepop software (Raymond and Rousset, 1995) and data files produced by DIYABC are under this format. Microsatellite

genotypes must be noted with 3 (haploid) or 6 (diploid) digits, these three digit numbers

²⁵ being the length in nucleotides of the corresponding PCR products. In addition, we have added

26 some features to this basic format in order to use sequence data. All these additions are explained in

²⁷ section 4.4. SNP data correspond to a different file format, also detailed in section 4.4.

Any extension is accepted for datafile names, including no extension at all. If the data file is simulated with DIYABC, the extension is mss for microsatellite/DNA sequence data and snp for SNP data. The

 $_{\rm 30}$ $\,$ next page shows examples of data sets saved.

31 4.2.2 reference table files

³² Reference table files are binary files which include two successive parts :

- The first part is a header which contains information necessary to read the second part, such as the number of scenarios, or the number of parameters of each scenario.
- The second part contains simulated data set records, each record containing the scenario number, the parameter and summary statistics values.

³⁷ Each time a reference table is created or increased (each time the Run computation button is pressed), a

³⁸ text file is created in the project directory with the name first_records_of_the_reference_table_X.txt

 $_{39}$ in which X is an integer number starting at 0 and increasing each time the Run computation button is

40 pressed. This file provides a text version of the first n newly created records of the reference table (n

⁴¹ being equal to the *Particle loop size*, see section 3.7.3).

42

43 4.2.3 output files

⁴⁴ As already seen, DIYABC achieves different analyses : comparison of scenarios, estimation of posterior ⁴⁵ distribution of parameters, model checking, computation of bias and mean square errors and evaluation of

46 confidence in scenario choice. Each analysis has its own output which can be printed and saved. Graphs

 $^{^5\}mathrm{Graphic}$ User Interface

6

¹ are saved under the chosen format and non-graphic output are saved in text files.

We now describe all the files produced by each type of analysis. These files are located in directories (one directory per analysis) gathered in the **analysis** subdirectory of the project directory. Below is an example of the TOYTEST2_2012_9_26-1 project directory substructure:

T0YTEST2_2012_9_26-1
analysis
bias1-1_bias
bias1-2_bias
—— bias1-3_bias
—— bias1-4_bias
—— bias1-5_bias
bias1_bias
compscen_comparison
conf1_confidence
conf2_confidence
—— estim_s2_estimation
—— mc_scen2_modelChecking
— mc_scen2_newmsstat-1_modelChecking
— mc_scen2_newmstat-1_modelChecking
— mc_scen2_newmstat-2_modelChecking
— mc scen2 newmstat-3 modelChecking
mc_scen2_newmstat-4_modelChecking
<pre> mc_scen2_newmstat-5_modelChecking</pre>
mc_scen2_newmstat_modelChecking
<pre> mc_scen2_newsstat_modelChecking</pre>
— new4_modcheck_stats1_modelChecking
—— new4_modcheck_stats2_modelChecking
— new4_modcheck_stats3_modelChecking
<pre> new4_modcheck_statset_+_modelChecking</pre>
NEW_NEW_TEST_MODCHECK_modelChecking
preval_pca
L pictures
Preserves

7 8

Note that each directory name starts with the name of analysis followed by the type of analysis, *e.g.* **bias** for a bias/precision analysis or **comparison** for a comparison of scenarios. In addition, when a picture has been saved, the corresponding file is located under a subdirectory named **pictures** (*e.g.* at the bottom of the figure above).

Pre-evaluate scenario prior combinations : This analysis can produce two output files named ACP.txt 13 and locate.txt. The former is the output of the Principal Component Analysis and the latter 14 that of the analysis giving the proportion of simulated data sets which have a value below the 15 observed value for every summary statistics. This latter file is exactly what appears in the GUI. 16 The structure of the ACP.txt file is the following. The first line indicates the number of points 17 of the PCA, the number of PCA components (axes) and the inertia of each component, all values 18 are separated by a single space. The second line provides the components of the observed data. It 19 starts with a zero which corresponds to the scenario number in the following lines. Each subsequent 20 line provides the components of data simulated according to a given scenario which number is at 21 the beginning of the line. If one or more PCA figures have been saved, the corresponding files are 22 saved in the pictures subdirectory. They are named as refTable_PCA_X_Y_N.pdf, with X and Y 23 giving the axis numbers and N being the number of represented points. 24

Compute posterior probabilities of scenarios : This analysis produces three output text files : compdirect.txt,
 complogreg.txt and compdirlog.txt. The latter is directly visualized in the GUI when clicking
 the view numerical results button. The first two files are used by the GUI to elaborate the two
 graphics (Direct approach and Logistic regression). Again, if graphics have been saved, the corresponding file(s) is(are) in the pictures subdirectory of the analysis directory.

Evaluate confidence in scenario choice : This analysis produces a single output file, confidence.txt, the content of which is visualized in the GUI.

Estimate posterior distributions of parameter : Nine files are written as output of this type of
 analysis :

• three files mmmq_original.txt, mmmq_composite.txt and mmmq_scaled.txt contain the statis- tics (mean, median, mode and quantiles) for the original, composite and scaled parameters, respectively. They are visualized in the GUI when clicking the view numerical results button.
• three files paramstatdens_original.txt, paramstatdens_composite.txt and paramstatdens_scaled.txt are used by the GUI to produce the graphics showing prior/posterior distribution.
• three files phistar_original.txt, phistar_composite.txt and phistar_scaled.txt con- tains the ϕ^* values of the original, composite and scaled parameters, respectively. These files can be used for instance to redraw posterior distributions, <i>e.g.</i> with the <i>R</i> software.
As already mentionned, saved graphics are located in a pictures subdirectory.
Compute bias and precision of parameter estimations : Three files bias_original.txt, bias_composite.txt and bias_scaled.txt are produced by this type of analysis. All three files are visualized in the GUI.
Perform model-checking The output files of this type of analysis are the same as those of the <i>Pre-evaluate scenario prior combinations</i> analysis (see above). The only difference is in the names of the two text files which start with mc for model checking.
In addition, the GUI program writes several files in the project directory :
command.txt : this text file contains the history of commands issued by the GUI to be achieved by the computation program.
conf.analysis : this text file contains information about analyses.
conf.gen.tmp : this text file contains information about the loci, the genetic parameters and the summary statistics.
conf.hist.tmp : this text file contains information about the scenario and the historical parameters.
conf.th.tmp : This text file contains the title line of the reference table.
conf.tmp : This text file contains the name of the dataset and the number of parameters and summary statistics.
header.txt : This text file is a concatenation of the previous four files and is red by the computation program.
xxx.DIYABCproject : This text file contains the path to the xxx project.
$\mathbf{RNG}_{s} tate_{0}000.bin$: This binary file contains the current state of the random generator.
$\mathbf{init}_r ng.out$: This text file contains information about the initialization of the random generator.
The computation program writes the following files in the project directory :
reftable.log : This text file is produced when a reftable is increased. It provides the GUI with information about the progress of computations : achieved number of records, time left.
statobs.txt : This text file is written every time an analysis is performed. It contains the values of summary statistrics for the observed data set.
The following files are output by the computation program everytime it has been launched by a specific command of the GUI (their use is only for debugging purposes and they are all in the project directory) :

- ⁴³ general.out : when computing a reftable.
- 44 pre-ev.out : when performing a *Pre-evaluate scenario prior combinations* analysis.

¹ compare.out : when performing a *Compare scenarios* analysis.

- ² confidence.out : when performing a *Confidence in scenario choice* analysis.
- ³ estimate.out : when performing a *ABC parameter estimation* analysis.
- ⁴ **bias.out** : when performing a *bias-precision* analysis.
- ⁵ modelChecking.out : when performing a *model checking* analysis.

⁶ When performing a *Bias-precision* or a *Confidence in scenario choice* analysis, the computation program

⁷ simulates what we call *pseudo-observed datasets*. The parameter and summary statistics values of these

⁸ pseudo-observed_datasets_xxx.txt in which

 $_{9}$ $~\mathbf{xxx}$ is the name given to the analysis.

¹⁰ 4.3 Missing data

¹¹ Missing or undetermined genotypes should be coded as 000 (haploid microsatellites), 000000 (diploid ¹² microsatellites), < [] > (haploid sequences) or < [][] > (diploid sequences) and 9 (SNP) in the data ¹³ file.

¹⁴ Missing data are taken into account in the following way. For each appearance of a missing genotype in
¹⁵ the observed data set, the programs records the individual and the locus. When simulating data sets,
¹⁶ the program replaces the simulated genotype (obtained through the coalescence process algorithm) by

the missing data code at all corresponding locations. All summary statistics are thus computed with the
 same missing data as for the observed data set.

WARNING: datafiles with virtually any amount of missing data can be analysed by DIYABC. However, for each locus a minimum of one genotyped individual per population is required. This is because

ever, for each locus a minimum of one genotyped individual per population is required. This is because summary statistics cannot be computed at a given locus in a given population if only missing data are

22 present.

23 4.4 Data files

There are two different incompatible formats for data files, one for SNP loci and the other for microsatellite/DNA sequence data.

For the microsatellite/DNA sequence data, the format already presented in version 1 of DIYABC is an extended Genepop format. The additional features are :

281. In the title line appears the sex ratio noted between < and > under the form < NM = rNF >,29in which r is the ratio of the number of females per male (e.g. < NM = 2.5NF > means that30the number of males is 2.5 times the number of females; for a balanced sex ratio one should write31< NM = 1.0NF >). Since the title is generally only copied, this addition should not interfere with32other programs using Genepop datafiles. Also if there is no such sex ratio addition, DIYABC will33consider by default that NM=1.0NF.

- 2. After the locus name, there is an indication for the category of the locus which is $\langle A \rangle$ for autosomal diploid loci, $\langle H \rangle$ for autosomal haploid loci, $\langle X \rangle$ for X-linked (or haplo-diploid) loci, $\langle Y \rangle$ for Y-linked loci and $\langle M \rangle$ for mitochondrial loci. If no category is noted, DIYABC will consider the locus as autosomal diploid or autosomal haploid depending on the corresponding genotype of the first typed individual.
- 3. Genotypes of microsatellite loci are noted with six digit numbers (e.g. 190188) if diploid and by
 three digit numbers (e.g. 190) if haploid.

4. Sequence locus are noted between \langle and \rangle . In addition each sequence alleles/haplotypes is noted 41 between brackets. For instance, a haploid sequence locus will be noted < [GTCTA] > and a diploid 42 sequence locus < [GTCTA][GTCTT] >. Sequences may contain undetermined nucleotides which 43 will be denoted $\hat{A} \in \hat{A}$. Note that all sequence alleles/haplotypes have to be of similar 44 length. The length of shorter sequence allele/haplotypes needs to be adjusted to the larger sequence 45 allele/haplotype by adding A N A or A - A symbols at the end of the sequences. It is worth stressing 46 that, aT a given locus, only the portion of the sequence shared by all individuals of the dataset will 47 be used for computing summary statistics. We therefore advise removing locus-individual sequence 48 data with too many "N" and replace them by missing data. Finally, remember that this version of 49

- the program does not consider insertion-deletion mutations, mainly because there does not seem to be much consensus on this topic.
- ³ 5. Missing microsatellite genotypes are noted 000 if haploid or 000000 if diploid.
- $_{4}$ 6. Missing sequence alleles/haplotypes are noted < [] > if haploid or < [][] > if diploid.
- ⁵ For *SNP data*, the datafile format includes:

• a first line (headline) providing the sex-ratio as above (the e.g. NM = 1.0NF >for a bal-6 anced sex ratio), the required MAF (minimum allele frequency criterion; e.g. $\langle MAF = 0.05 \rangle$ or <MAF=hudson>), and any text that can be used as a title. Information on the sex ratio and the 8 MAF can be anywhere in this line. The MAF is computed pooling all genes genotyped over all studied population samples. For instance, the specification of a MAF equal to 5% (i.e. $\langle MAF=0.05 \rangle$) 10 will automatically select a subset of m loci characterized by a minimum allele frequency > 5%11 among the l locus of the observed dataset. In agreement with this, only m locus with a MAF>5% 12 will be retained in a simulated dataset (simulated loci with a $MAF \leq 5\%$ will be discarded). Writing 13 <MAF=hudson> (or omitting to write any instruction with respect to the MAF) will bring the 14 program to use the standard Hudson's algorithm without further selection as done so far in the 15 previous version of DIYABC. 16

- a second line starting with the three keywords IND SEX POP, separated by at least one space, followed by as many letters as SNP loci, the letter giving the location of the locus as above (< A >for autosomal diploid loci, < H > for autosomal haploid loci, < X > for X-linked (or haplo-diploid) loci, < Y > for Y-linked loci and < M > for mitochondrial loci). Letters are separated by a single space.
- as many lines as there are genotyped individuals, with the code-name of the individual, a letter (Mor F) indicating its sex, a code-name for its population and the values (0, 1 or 2) of the number of the (arbitrarily chosen) reference allele at each SNP locus. For instance in the case autosomal diploid SNP loci, we have 0 = homozygous genotype for the non reference allele, 1 = heterozygous genotype for the reference allele, 2 = homozygous genotype for the reference allele. It is worth noting that for autosomal haploid loci (denoted H), as well as for mitochondrial loci (denoted M) and Y-linked loci (denoted Y), the SNP genotypes will be 0 or 1.
- Only a subset of the SNP loci included in the data file can be considered (selected) in the simulations and hence in subsequent ABC analyses. For instance one can choose to select in the corresponding panel the SNP loci 1 to 1000 of a data file including a total of say 10000 loci. This allows running faster simulations and processing independant replicate ABC analyses of sets of 1000 SNP loci by considering loci 1 to 1000 and then 1001 to 2000, and so on, in separate analyses.
- Following Hudson's (2002) criterion, only polymorphic SNP loci (over the entire dataset) are considered. Monomorphic SNP loci (over the entire dataset) are automatically filtered by the program. It is preferable, however, that the user removes himself all monomorphic loci from his/her (observed) dataset before submitting it to DIYABC.

⁴¹ Below are three examples of data sets that can be analyzed with DIYABC.

In the *first example*, this data set includes two population samples, each of 12 diploid individuals (8 females and 4 males in the first sample and 5 females and 7 males in the second sample). As deduced from the letter between < and > on the locus name lines (see page 25), these individuals have been genotyped at 3 microsatellite loci (1 autosomal < A >, 1 X-linked < X > and 1 Y-linked < Y >) and 3 DNA sequence loci (1 autosomal. 1 X-linked and 1 mitochondrial < M >). The species sex-ratio, given in the title line, is of three males for one female (< NM = 3NF >) or in other words, the number of males equals three times the number of females.

A107	ile exampl <a>					
A1023	<x></x>					
A1101	<y></y>					
S001	<a>					
S019	<x></x>					
S015	<m></m>					
Pop						
1-01 ,	172176	156172	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-02 ,		156184		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-03 ,		168192		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-04 ,		158182		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-05 ,		154168		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-06 ,		160152	+ + +	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-07 ,		172216		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
1-08 ,		160202		<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACT]
1-09 ,	176162		316	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT]
1-10 ,	150194		296	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT]
1-11 ,	158176	182	326	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT1
1-12 ,	154156	166	318	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACTT
Pop						
2-01 ,	168164	184216	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACTT
2-02 ,	164160	152208	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACT]
2-03 ,	166222	180170	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACT1
2-04 ,	212150	228166	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACT1
2-05 ,		228196	000	<[TAGCTA][TAGCTA]>	<[GATCG][GATCG]>	<[ATTACT1
2-06 ,	156212	178	292	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT1
2-07 ,	166222		302	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT1
2-08 ,	196200	168	278	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT1
2-09 ,	174174		292	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACTT
2-10 ,	178194		282	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACT1
2-11 ,	204160		304	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACTT
2-12 ,	190226	160	226	<[TAGCTA][TAGCTA]>	<[GATCG]>	<[ATTACTT

In the *second example*, the species is haploid. Individuals have been genotyped at three autosomal microsatellite loci and one mitochondrial DNA sequence locus. The species being haploid (deduced from the presence of autosomal haploid loci), no indication of the sex-ratio appears in the title line.

E E (Data file 3153 <h> 3632 <h> 3046 <h> COI <m> POP</m></h></h></h>	>	nple			
-	And - 001		164	184	210	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>
			164	182	214	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>
	And - 003		150	186	214	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>
	And - 004		160	188	220	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>
	And - 005	<i>.</i>	152	176	214	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>
	POP	,				
	Bor-001		154	188	210	<[TCCTTCCGTTGTGCGACCACTTCGCACGTT]>
	Bor-002		154	196	206	<[TCCTTCCGTTGTGCGACCACTTCGCACGTT]>
	Bor-003		166	194	202	<[TCCTTCCGTTGTGCGACCACTTCGCACGTT]>
	Bor-004		150	194	200	<[TCCTTCCGTTGTGCGACCACTTCGCACGTT]>
I	POP					•
	Cam-001	,	202	222	202	<[TCCTTCCGTTGTGCGGCCACTTCGTACGTT]>
	Cam-002	,	226	206	198	<[TCCTTCCGTTGTGCGGCCACTTCGTACGTT]>
	Cam-003	,	216	206	208	<[TCCTTCCGTTGTGCGACCACTTCGTACGTT]>

In the *third example*, the species is diploid and was genotyped at 23 SNP loci: 20 autosomal loci, 1 4 X-linked locus, 1 Y-linked locus and 1 mitochondrial locus. The first line provides the title which includes 5 the species sex-ratio and the MAF (minimum allele frequency). The second line indicates: individual 6 name in column 1, individual sex in column 2 (M for male, F for female, 9 or any other letter if unknown), 7 population name in column 3 and one column per SNP locus (letter A for an autosomal locus, X for an X-8 linked locus, Y for a Y-linked locus and M for a mitochondrial locus). Columns are separated by one or more 9 spaces. SNP genotypes are coded 0, 1 or 2 (9 for missing data) according to the number of reference 10 alleles at the corresponding locus. Note that the sex has no influence on simulations for autosomal, 11 mitochondrial or haploid loci (any sex can be hence declared). For individuals with an unknown sex 12 (denoted 9, see IND P1_2, P1_3 and P2_15), data for autosomal (as well as mitochondrial and haploid) 13 loci will be taken into account and simulated. On the other hand, the genotypes of X-linked and Y-linked 14 loci for the same IND P1_2, P1_3 and P2_15 with unknown sex cannot be safely determined and are 15 hence noted 9 for missing data. 16

	Example.Datafile.for.SNP. <nm=1.5nf><maf=hudson>.</maf=hudson></nm=1.5nf>
	IND. SEX. POP A.
	P1 1 · · · F · · · · P1 · · · · · 0 · 0 · 0 · 1 · 1 · 1 · 0 · 0
	P1_29P1P11.0.0.1.0.0.0.0.0.0.0.1.2.0.0.0.0.0
	P1_39P1P19.1.0.0.1.0.0.0.0.0.0.1.2.0.1.0.0.0.0.0.0
	P1_4FP1P10.0.9.1.2.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	P1_5···F···P1····0·0·9·0·1·2·0·0·1·1·2·0·0·0·0·0·0·0·0·0·0·0·0
	$P1_6 \cdots F \cdots P1 \cdots 0 \cdots 0 \cdots 1 \cdots 0 \cdots 0 \cdots 0 \cdots 1 \cdots 0 \cdots 0 \cdots $
	P1_7 · · · F · · · · P1 · · · · · 0 · 0 · 0 · 1 · 0 · 0 · 0 ·
	P1_8···F···P1····0·0·1·0·1·0·0·0·0·0·2·0·0·0·0·0·0·0
	P1_9···F····P1····0·0·1·0·0·0·0·0·2·2·0·0·0·0·0·0·0·0
	P1_10 · · F · · · · P1 · · · · · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
	$P1_11 \cdot \cdot M \cdot \cdot \cdot \cdot P1 \cdot \cdot \cdot \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 $
	$P1_{12} \cdot M \cdot \cdot \cdot P1 \cdot \cdot \cdot \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 1 \cdot 0 \cdot 0 \cdot 0 $
	$P1_{13} \cdot M \cdot \cdot P1 \cdot \cdot \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 2 \cdot 2 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 1$
	$P1_14 \cdots M \cdots P1 \cdots \cdots 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot$
	$P1_15 \cdots M \cdots P1 \cdots \cdots 1 \cdot 0 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \cdot 0 \cdot 0 \cdot 1 \cdot 2 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0$
	P2_1 · · · F · · · · P2 · · · · 0 · 0 · 0 · 1 · 0 · 0 · 0 · 0 ·
	P2_2 · · · F · · · · P2 · · · · 0 · 0 · 0 · 0 · 0 · 1 · 0 · 0 ·
	P2_3 · · · F · · · · P2 · · · · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0
	P2_4FP2P20.0.0.0.1.0.0.0.0.2.0.0.0.0.0.0.0.0
	P2_5 · · · F · · · · P2 · · · · 0 · 0 · 0 · 1 · 2 · 9 · 0 · 0 · 0 · 2 · 2 · 1 · 0 · 0 · 0 · 0 · 0 · 0 · 1 · 0 · 0
	$P2 7 \cdots F \cdots P2 \cdots 0.0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0$
	P2 8 · · · F · · · · P2 · · · · 0 · 0 · 1 · 1 · 0 · 0 · 0 · 0 ·
	P2 9 · · · F · · · · P2 · · · · 0 · 0 · 0 · 2 · 0 · 0 · 0 · 2 · 0 · 2 · 0 · 0
	P2 10 · F · · · P2 · · · 1 · 0 · 0 · 0 · 1 · 0 · 0 · 0 · 0
	P2 11 · F · · · P2 · · · · 0 · 0 · 0 · 1 · 1 · 0 · 0 · 0 ·
	P2 12 · F · · · P2 · · · · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0
	P2 13 · M · · · P2 · · · · 0 · 0 · 0 · 0 · 1 · 1 · 0 · 0 ·
	P2 14 · · M · · · · P2 · · · · 0 · 0 · 0 · 0 · 0 · 1 · 0 · 0 ·
	P2 15 · 9 · · · P2 · · · · 0 · 0 · 0 · 1 · 0 · 0 · 1 · 0 · 2 · 2 · 0 · 0 · 0 · 0 · 0 · 0 · 0
1	-

5. Cluster version

The ABC method requires simulating many data sets, which is time consuming. Typically, one to several
 millions data sets are needed to build up an interresting reference table and this process can last several
 hours to several days. Hence it might be useful to take advantage of a computer grid cluster.

This part of the notice describe how to use a cluster with the GUI frontend in Section 5.1. Advices to distribute the workload in jobs on the cluster are given in Section 5.2. For advanced users who need

⁷ more information, Section 5.3 describes the jobs that are sent to the queueing system of the cluster, and

⁸ Section 5.4 sums up how DIYABC produces independent random number generators (RNG's).

⁹ 5.1 Using a cluster with DIYABC

You can prevent DIYABC from simulating data sets on your own computer by checking use a cluster in the setting panel of the GUI. Then, instead of computing the simulations on your computer, the GUI

¹² frontend will prepare a bundle for the cluster. Note that, while this option remains checked, DIYABC

¹³ will not compute any reftable on your computer.

¹⁴ Generating a reference table with a cluster is a three stage process.

1st stage Configure the required parameters in the GUI frontend and generate the cluster bundle (set
 of zipped files).

- ¹⁷ **2nd stage** Transfer the bundle to the cluster and run it.
- ¹⁸ **3rd stage** Transfer back the reference table and include it to the project

¹⁹ In the cluster tab of the settings panel, you can configure the useful parameters to send correct orders to

²⁰ the job scheduler of your cluster. The bash script named launch.sh of the cluster bundle produced by

²¹ the GUI will sent those orders to the job scheduler of the cluster. To be able to write this bash script,

²² the GUI needs informations on our cluster you can give by filling the fields of the cluster tab.

		Settings		
arious appearance cluster his	torical MM Microsats	MM Sequences		
✓ Use a cluster (don't check if you o	lon't know what it is)			
Number of seconds to seconds for a	a h i a h (a sa su da situ d	100000		
Number of records to generate for e	ach job (granularity)	100000		
number of cores used by each job	1			
,,,,,,				
Maximum number of jobs running a	the same time in the clus	ster (number of RNG's to	generate)	250
seed to generate all RNG files (if set	to negative then a rando	om seed will be used)	-1	
		(I)		
The diabc binary is on :		local		
Path to the diyabc binary on your co	mputer (local) browse	/usr/local/bin/diyabo		
	• • •			
NOT EDITABLE ! First part of the script	#!/bin/bash			
to run on your cluster master node	numSimulatedDataSet= numSimulatedDataSetB			
(this first part will be merged	coresPerJob=			
with the second part in order to obtain the launch.sh script)	maxConcurrentJobs=	•		
to obtain the laurich.sh script)		4		
Cancel	Rese	et default values		Save
currect				5070

24 25

23

²⁶ 5.1.1 Configuring distribution of the workload on the cluster

²⁷ You have to understand and edit six parameters of the cluster settings. We shall recall here that the "DIVARC bin are" are many in this to take a domate as of multi-

²⁸ "DIYABC binary" program is able to take advantage of multi-core computers. Thus to divde the whole ²⁹ workload, the cluster bundle can run several jobs, and configure each job to use several CPU cores of a

¹ given machine in the cluster⁶. The six parameters might be given by filling the blank fields of the cluster ² tab, and are as follow.

- "Number of simulations oer job (granularity)" or numSimulatedDatasetByJob: This integer indicates the number of data sets simulated by each single job. It represents the granularity of your computations on the cluster.
- "*Number of cores per job*" or coresPerJob: This integer indicates how many CPU cores will be used by each job.
- *Maximum number of jobs running at the same time in the cluster*" or maxConcurrentJobs: This integer indicates the maximum number of jobs allowed to run simultaneously on the cluster.
- "*First seeds of the RNG*'s" or **seed**: This integer indicates to DIYABC the seeds to initialize the RNG's. By writing -1 you ask the program to use random seeds (recommended). Starting from user-defined seeds is mainly for testing or debbugging purposes.
- "The DIYABC binary is on": This option determines whether the DIYABC binary program (general) is already installed on the cluster (then set cluster) or if the bundle has to import a suitable binary (then set local).
- "Path to the DIYABC binary" or DIYABCPath: This string indicates the path of a DIYABC binary program that can run on the machines of the cluster. Note that the binary can be on your own computer (you can browse your file system to choose the correct DIYABC binary with the dedicated button) or on your cluster, in which case it is highly recommanded to specify an absolute path.

²⁰ 5.1.2 Dealing with the job scheduler of the cluster

The two last text boxes of the cluster tab in the settings panel deal with the main script launch.sh 21 executed on the master node of the cluster. This script generates a pool of RNG files, submits the jobs 22 to the scheduler queuing system using a node.sh script, monitors the jobs and merges all reftable files 23 into a single reftable file when all jobs are completed. The last box (which is the only one that be edited) 24 deals with the jobs submission. By default, launch.sh targets a Grid Engine cluster. You probably 25 need to customise this script to fit your cluster configuration (scheduler system, queue name, ...). You 26 should mainly need to modify the ##### EDIT ##### section to comply with the rules of the job queueing 27 system of the cluster. Please ask for help to your cluster system administrator. 28

²⁹ 5.1.3 Transfer the bundle to the cluster and run it

Once you have checked the box Use a cluster (...), configured the cluster parameters in the settings panel and saved them, you need to click on the Run computation button from your project panel. The program will ask you the name of the tar archive you will have to copy on the cluster to run the computations. This tar archive can be copied to your cluster account by many ways (for instance with the help an sftp client like FileZilla or WinSCP). Once the archive is on your cluster working directory, you can log in your cluster account with a shell console and untar your archive by typing :

tar -xvf <yourTarArchiveName.tar>

 36 cd yourTarArchiveName

- 37
- ³⁸ This will create a directory with all the files needed to run DIYABC, namely
- ³⁹ 1. general : the DIYABC binary program or executable
- $_{40}$ 2. header.txt : the header file
- 3. launch.sh : the main script to run
- 42 4. node.sh : the script that will be runned by your scheduler for each job
- 43 5. < yourData.mss > : the data file

⁶The multi-threaded capacity of DIYABC was programmed with the OpenMP API. This means that DIYABC can use several cores in a single computer but, contrary to MPI-based program, a single job cannot use several cores distributed on different computers. So please be sure to use an apropriate parallele environment to submit your jobs. Ask to your cluster system administrator.

- ¹ You can now run the main script by typing ./launch.sh in the shell console. If everything was set ² correctly, you can monitor the progression of the computations in the console. For instance, for a total
- ³ of 50,000 data sets to be produced through 5 jobs of 10,000 data sets:

, numbers=left, numberstyle=, stepnumber=1, numbersep=5pt, backgroundcolor=

```
, tabsize=4, captionpos=b, breaklines=true, breakatwhitespace=false, title=, keywordstyle=, commentstyle=, stringstyle=,
escapeinside=%**), morekeywords=*, deletekeywords=
>launch.sh
** Generation of RNG files :
./general -p ./ -n "t:1;c:5;s:1038"
** jobs submition :
qsub -N n1_test -q short.q -cwd node.sh 10000 /home/dehneg/DIYABCtest 1
test.mss
Your job 111598 ("n1_test") has been submitted
qsub -N n2_test -q short.q -cwd node.sh 10000 /home/dehneg/DIYABCtest 2
test.mss
Your job 111599 ("n2_test") has been submitted
qsub -N n3_test -q short.q -cwd node.sh 10000 /home/dehneg/DIYABCtest 3
test.mss
Your job 111600 ("n3_test") has been submitted
qsub -N n4_test -q short.q -cwd node.sh 10000 /home/dehneg/DIYABCtest 4
test.mss
Your job 111601 ("n4_test") has been submitted
qsub -N n5_test -q short.q -cwd node.sh 10000 /home/dehneg/DIYABCtest 5
test.mss
Your job 111602 ("n5_test") has been submitted
** monitoring :
0/5 finished 0\% (total : 0)
1/5 finished 20\% (total : 10000)
1/5 finished 20% (total : 10000)
2/5 finished 40\% (total : 20000)
4/5 finished 80% (total : 40000)
5/5 finished 100% (total : 50000)
** reftables concatenation :
./general -p /home/dehneg/DIYABCtest -q 2>&1 concat.out
All the result files have been concatenated into reftable.bin
See concat.out output file for logs
```

6 Once the monitoring phase starts, you can quit launch.sh and restart it at any time. The batch 7 script launch.sh will not resubmit jobs that have already be sent to the queueing system of the cluster.

⁸ 5.1.4 Transfer back the reference table and include it into your computer project

9 Once your final reftable.bin file has been produced, you need to transfer it from the cluster to your 10 own computer (with, *e.g.*, an sftp client, see above). The Import and merge reftable file option 11 from your project menu is the correct way to include the imported reference table into your project. Be 12 careful that DIYABC do not inspect the imported reference table and do not backup the old reference 13 table before merging them. You will not be able to recover from any error during this last stage except 14 if you backup your old reference table.

¹ 5.2 Advices to distribute the workload on a cluster

The six parameters of the cluster settings tab allow you to optimize your use of the cluster according to your access limitations, the workload of the cluster from other users and its queueing policy. For instance, if your cluster is overloaded and if the waiting time in queue is long, then it is preferable to choose a high amount of simulations per job. On the contrary, if a queue for short jobs is free while the other queues are overloaded, then it is preferable to choose a low amount of simulations per job and to submit them to the short queue... Note also that increasing the number of cores per job generally increases the queueing waiting time. But remember that a job with 40 cores will not increase the reference table faster than 40 jobs with one core each.

10

Both parameters coresPerJob and maxConcurrentJobs are used to initialize a set of independent 11 RNG's (see Section 5.4 below). One caveat of our way of producing independent RNG's is the need 12 to simultaneously initiate all RNG's that will be used. Before starting the jobs queue submission, the 13 main script launch.sh will produce of a pool of coresPerJob × maxConcurrentJobs generators, stored 14 in maxConcurrentJobs "RNG files". Then, each job will randomly choose one RNG file that is not 15 currently in use by other concurrent jobs, to initiate its own coresPerJob parallel RNG's and store the 16 last states of thoses generators at the end of the computation. Be careful, if you use lots of jobs and cores 17 simultanuously, initialisation of the RNG's will be time consuming, see Fig. 1. 18

number of jobs (t)	number of cores per job (c)							
	1	4	8	16	32	40	80	
100	20"	1'20"	3'	10'	20'	26'	30'	
200	50"	3'	7'	20'	40'	50'	1h10'	
500	2'	8'	25'	50'	1h40'	2h06'	2h45'	
1000	4'	16'	50'	1h40'	2h10'	2h45'		

Figure 1: RNG files Time Generation. As shown in section 5.4, one caveat of the RNG method is the obligate generation of all the RNG files at once (generating the RNG files one by one for each job on a cluster is possible but will result in a dangerous bias). The second caveat of the RNG method is a consequence of the first one, ie the time needed to generate the RNG files increases depending on the number of RNG files t and the number of cores c available for each RNG file. Once a file is generated, it is not possible to add cores.

¹⁹ 5.3 A detailed description of each job

The jobs sent to the queueing system of the cluster are given in the script node.sh. This script can be decomposed into the following sequential stages:

- Create a *jobid* name according to the following pattern: <node hostname>-n-<sequential number
 of the job>-pid<pid of nodes.sh execution>-<a random number> (*pid* mean Process IDenti fier).
- Use the scheduler temporary directory if the scheduler provide a TMPDIR environment variable or create a working temporary directory /tmp/tmpDIYABC_<job id> on the cluster node.
- Choose a RNG file from the pool of RNG files created by launch.sh. (It means that the node must access your DIYABC *yourTarArchiveName* directory in your working directory.)
- 4. Run DIYABC binary program (of course !).

5. Copy periodically the reftable log file to the *yourTarArchiveName* directory. Thus, launch.sh can inform the user about the progress of the computations (through the total amount of simulations already performed).

Note that, as long as a job (node.sh) is using a RNG file, the RNG file in the *yourTarArchiveName* directory is replaced by a lock file named <the choosen RNG file name>.lock and a flag file named the <choosen RNG file name>_<date of the run>_<job id>. The flag file contain the local pid of the job on the node of DIYABC. Once a job has finished and updated the RNG file, it removes the lock and

³⁷ flag files and copy back the updated RNG file.

¹ 5.4 A note on the random number generators

² By nature, a random number generator (RNG) is a sequential algorithm, as described in Figure 2 below.

Indeed, we shall describe a RNG by its updating function f changing deterministically the internal state. Each time the user requires a new realization of the uniform distribution over [0; 1), the algorithm derives

⁵ a value u_k from the current internal state i_k and then updates this state with f. Hence a first and

6 important issue for parallel Monte Carlo computations is to design independent RNGs that might run in

- 7 parallel while minimizing the communications between processors. It is quite standard to use as many
- ⁸ RNGs as computing cores in the computer or in the cluster of computers.

Figure 2: Random Number Generator. A RNG is an algorithm that produces a sequence of floating numbers, says u_0, u_1, \ldots , that resembles a sequence of independent random numbers, uniformly distributed over [0; 1). It uses a sequence of internal states, say i_0, i_1, \ldots , which are computed by reccurrence, namely, $i_{k+1} = f(i_k)$. The first internal state i_0 is often named the seed.

The second version of DIYABC uses the Dynamic Creator (DCMT) of Matsumoto and Nishimura (2000) to look for a set of independent Mersenne-Twister generators. Actually, the updating function fof a Mersenne-Twister generator is parametrized by a few integer numbers. The output of the DCMT is a set of N updating functions, say $\{f^{(1)}, \ldots, f^{(N)}\}$, producing independent streams. That is, the *n*-th RNG is a sequence of iternal states $i_0^{(n)}, i_1^{(n)}, i_2^{(n)}, \ldots$ satisfying $i_{k+1}^{(n)} = f^{(n)}(i_k^{(n)})$ that gives rise to a sequence of independent, uniformly distributed numbers $u_0^{(n)}, u_1^{(n)}, u_2^{(n)}, \ldots$. We found that the DCMT was simple to use and gave good results. There is no limitation on the number N of RNGs it produces. Once initialized, the different RNGs do not require any communication between them and each of them runs as quickly as a single Mersenne-Twister generator. But an important limitation is that it is impossible to add a new

¹⁸ RNG to the set produced by the DCMT. Practically, this means that we have to know *a priori* a bound

¹⁹ on the number of jobs working together in parallel. See section 5.

Bibliography

- Beaumont, M. A., W. Zhang and D. J. Balding, 2002. Approximate Bayesian Computation in Population
 Genetics. Genetics 162, 2025-2035.
- ⁴ Beaumont, M.A., 2008. Joint determination of topology, divergence time, and immigration in population

trees. In Simulation, Genetics, and Human Prehistory, eds. S. Matsumura, P. Forster, C. Renfrew.
 McDonald Institute Press, University of Cambridge (*in press*).

- ⁷ Begg, C.B. and R. Gray, 1984. Calculation of polychotomous logistic regression parameters using indi vidualized regressions. *Biometrika*, **71**, 11-18.
- Belkhir K., Borsa P., Chikhi L., Raufaste N. and F. Bonhomme, 1996-2004 GENETIX 4.05, logiciel
 sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions,
 CNRS UMR 5171, Universite de Montpellier II, Montpellier (France).
- Bertorelle, G. and L. Excoffier, 1998. Inferring admixture proportion from molecular data. Mol. Biol.
 Evol. 15, 1298-1311.
- Choisy, M., P. Franck and J.M. Cornuet, 2004. Estimating admixture proportions with microsatellites :
 comparison of methods based on simulated data. *Mol. Ecol.* 13, 955-968.
- Chakraborty R and L Jin, 1993. A unified approach to study hypervariable polymorphisms: statistical
 considerations of determining relatedness and population distances. EXS. 67, 153?175.
- ¹⁸ Cornuet, J. M., M. A. Beaumont, A. Estoup and M. Solignac, 2006. Inference on microsatellite mutation
 ¹⁹ processes in the invasive mite, *Varroa destructor*, using reversible jump Markov chain Monte Carlo.
- ²⁰ Theoret. Pop. Biol. **69**, 129-144.
- ²¹ Cornuet J.M., V. Ravignᅵ and A. Estoup, 2010. Inference on population history and model checking
 ²² using DNA sequence and microsatellite data with the sofware DIYABC (v1.0). BMC Bioinformatics
 ²³ 11,401.
- ²⁴ Cornuet J.M., F. Santos, M.A. Beaumont, C.P. Robert, J.M. Marin, D.J. Balding, T. Guillemaud and
 ²⁵ A. Estoup, 2008. Infering population history with DIYABC: a user-friendly approach to Approximate
 ²⁶ Bayesian Computations. *Bioinformatics*, 24 (23), 2713-2719.
- ²⁷ Cornuet, J-M., Pudlo, P., Veyssier, J., Dehne-Garcia A., Gautier M., Leblois R., Marin J-M, and A.
 ²⁸ Estoup, 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about
- population history using single nucleotide polymorphism, DNA sequence and microsatellite data. *Bioin*-
- 30 formatics. Vol. 30, no. 8, p1187–1189, doi: 10.1093/bioinformatics/btt763.
- Estoup, A., M. Solignac, M. Harry and J.M. Cornuet, 1993. Characterization of $(GT)_n$ and $(CT)_n$ microsatellites in two insect species: *Apis mellifera* and *Bombus terrestris*. *Nucl. Ac. Res.*, **21**, 1427-1431.
- Estoup, A., I. J. Wilson, C. Sullivan, J. M. Cornuet and C. Moritz, 2001 Inferring population history
 from microsatellite et enzyme data in serially introduced cane toads, *Bufo marinus. Genetics*, 159, 1671-1687.
- Estoup, A., P. Jarne and J.M. Cornuet, 2002. Homoplasy and mutation model at microsatellite loci and
 their consequences for population genetics analysis. *Mol. Ecol.*, **11**, 1591-1604.
- Estoup, A. and S. M. Clegg, 2003. Bayesian inferences on the recent islet colonization history by the bird
 Zosterops lateralis lateralis. *Mol. Ecol.* 12: 657-674.

- Estoup, A., M.A. Beaumont, F. Sennedot, C. Moritz and J.M. Cornuet, 2004. Genetic analysis of complex demographic scenarios : spatially expanding populations of the cane toad, *Bufo marinus. Evolution*, 58,
- ² 2021-2036.
- ⁴ Estoup, A., E. Lombaert, J.M. Marin, T. Guillemaud, P. Pudlo, C.P. Robert and J.M. Cornuet, 2012.
- $_{5}$ Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear
- ⁶ discriminant analysis on summary statistics. *Molecular Ecology Resources*, **12**, 846-855.
- Excoffier, L., A. Estoup and J.M. Cornuet, 2005. Bayesian analysis of an admixture model with mutations
 and arbitrarily linked markers. *Genetics* 169, 1727-1738.
- FAGUNDES, N.J.R., N. RAY, M.A. BEAUMONT, S. NEUENSCHWANDER, F. SALZANO, S.L. BONATTO
 AND L. EXCOFFIER, 2007. Statistical evaluation of alternative models of human evolution. *Proc. Natl.* Acad. Sc., 104 : 17614-17619.
- Fu, Y.X. and Chakraborty, R., 1998. Simultaneous estimation of all the parameters of a stepwise mutation model. *Genetics*, **150**, 487-497.
- Garza JC and E Williamson, 2001. Detection of reduction in population size using data from microsatellite
 DNA. Mol. Ecol. 10,305-318.
- Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin, 1995. Bayesian Data Analysis. Chapman et Hall,
 London, 526p.
- Goldstein DB, Linares AR, Cavalli-Sforza LL, and Feldman MW, 1995. An evaluation of genetic distances
 for use with microsatellite loci. *Genetics* 139, 463-471.
- Goudet, J. ,1995. FSTAT (Version 1.2): A computer program to calculate F- statistics. J. Hered. 86, 485-486.
- Griffiths, R.C. and S. Tavarᅵ, 1994. Simulating probability distributions in the coalescent. Theor. Pop.
 Biol. 46, 131-159.
- Guillemaud T., M.A. Beaumont, M. Ciosi, J.M. Cornuet and A. Estoup, 2010. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. *Heredity*, 104, 88-99.
- Haag-Liautard C., N. Coffey, D. Houle, M. Lynch, B. Charlesworth and P.D. Keightley, 2008. Direct
 estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. *Plos Biol*, 6, e204.
- Hamilton, G., M. Stoneking and L. Excoffier, 2005. Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. *Proc. Natl. Acad. Sci. USA*, 102, 7476-7480.
- Hasegawa, M., Kishino, H and Yano, T., 1985. Dating the human-ape splitting by a molecular clock of
 mitochondrial DNA. *Journal of Molecular Evolution* 22:160-174.
- Hudson, R., M. Slatkin and W.P. Maddison, 1992. Estimation of levels of gene flow fom DNA sequence
 data. *Genetics*, 132, 583-589.
- Hudson, R., 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. *Bioin- formatics*, 18: 337-338.
- Ihaka R. and R. Gentleman, 1996. R: a language for data analysis and graphics. J. Comput. Graph. Stat.,
 5, 299-314
- Ingvarsson P.K., 2008. Multilocus patterns of nucleotide polymorphism and the demographic history of
 Populus tremula. Genetics, 180: 329-340.
- Jukes, TH and Cantor, CR., 1969. Evolution of protein molecules. Pp. 21-123 in H. N. Munro, ed.
 Mammalian protein metabolism. Academic Press, New York.
- Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through com parative studies of nucleotide sequences. *Journal of Molecular Evolution* 16:111-120.

- ¹ Lombaert E., T. Guillemaud, J.M. Cornuet, T. Malausa, B. Facon and A. Estoup, 2010. ² Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. *PLoS ONE*,
- ³ http://dx.plos.org/10.1371/journal.pone.0009743.
- Matsumoto M and T Nishimura, 2000. Dynamic Creation of Pseudorandom Number Generators. Monte
 5 Carlo and Quasi-Monte Carlo Methods 1998, Springer, pp 56-69.
- Miller N, A. Estoup, S. Toepfer, D Bourguet, L. Lapchin, S. Derridj, K.S. Kim, P Reynaud, F. Furlan and
 T. Guillemaud, 2005. Multiple Transatlantic Introductions of the Western Corn Rootworm. *Science*,
- 8 **310**, p. 992
- 9 Nei M., 1972. Genetic distance between populations. Am. Nat. 106:283-292
- ¹⁰ Nei M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.
- ¹¹ Ohta, T. and Kimura, M., 1973. A model of mutation appropriate to estimate the number of elec-¹² trophoretically detectable alleles in a finite population.
- Pascual, M., M.P. Chapuis, F. Mestres, J. Balanyᅵ, R.B. Huey, G.W. Gilchrist, L. Serra and A. Estoup,
 2007. Introduction history of *Drosophila subobscura* in the New World : a microsatellite based survey
 using ABC methods. *Mol. Ecol.*, 16, 3069-3083.
- Pollock DD, Bergman A, Feldman MW, Goldstein DB, 1998. Microsatellite behavior with range con straints: parameter estimation and improved distances for use in phylogenetic reconstruction. *Theo- retical Population Biology*, 53, 256?271.
- Pritchard, J., M. Seielstad, A. Perez-Lezaun and M. Feldman, 1999. Population growth of human Y
 chromosomes: a study of Y chromosome microsatellites. *Mol. Biol. Evol.* 16, 1791-1798.
- Pudlo, P., Marin, J-M., Estoup, A., Cornuet, J-M., Gautier, M., and C.P. Robert. 2015. Reliable ABC
 model choice via random forests. *Bioinformatics*, in review.
- Rannala, B., and J. L. Mountain, 1997. Detecting immigration by using multilocus genotypes. Pro. Nat.
 Acad. Sci. USA 94, 9197-9201.
- Raymond M., and F. Rousset, 1995. Genepop (version 1.2), population genetics software for exact tests
 and ecumenicism. J. Hered., 86, 248-249
- Schug M.D., T.F. Mackay and C.F. Aquadro, 1997. Low mutation rates of microsatellite loci in *Drosophila melanogaster. Nat Genet.* 15, 99-102.
- Stephens, M. and P. Donnelly, 2000, Inference in molecular population genetics (with discussion). J. R.
 Stat. Soc. B 62, 605-655.
- Tajima, F., 1989. Statistical method for testing the neutral mutationhypothesis by DNA polymorphism.
 Genetics 123: 585-595
- Tamura, K., and M. Nei., 1993. Estimation of the number of nucleotide substitutions in the control region
 of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* 10:512-526.
- Vi¿cezquez F.J., T. P?rez, J. Albornoz and A. Domínguez, 2000.Estimation of microsatellite mutation
 rates in *Drosophila melanogaster. Genet Res.*, 76, 323-6.
- Weir BS and CC Cockerham , 1984. Estimating F-statistics for the analysis of population structure.
 Evolution 38: 1358-1370.
- ³⁹ Whittaker, J.C., Harbord, R.M., Boxall, N., Mackay, I., Dawson, G. and Sibly, R.M. 2003. Likelihood-
- ⁴⁰ based estimation of microsatellite mutation rates, *Genetics*, **164**, 781-787.